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1. Introduction 

Models are the simplified reality, where we keep the most important features and neglect 

the properties which do not or not substantially influence the examined process. In continuum 

physics the characteristics of the material are described by continuous functions which is in-

consistent with the atomic structure. However in the description of many phenomenas (e.g. 

elasticity, flows) the atomic and molecular descriptions are not necessary. The soultion is that 

we introduce the phenomenological description method by averaging the atomic effects and 

take in so-called material characteristics "constants”. These characteristics are usually non 

constants they are depend on temperature or other quantities. Thus we obtain a simplified - 

continuum - model of the material which is applied in many areas of rock mechanics and rock 

physics. The theory describing the mechanical properties of the continuum, the continuum 

mechanics is a phenomenological science. 

 

2. Continuum mechanical overview 

Based on the continuity hypothesis density functions assigned to extensive physical 

quantities (mass, momentum, energy) are considered mathematically as continuous functions 

of the location coordinates. Thus e.g. mass-density function   defined as follows 

 
V

m
limx,x,x

0V
321






 
 ,  (2.1) 

where V  is a small volume around the point  321 x,x,xP , m  is the implied mass. The 

boundary transition 0V   is interpereted physically i.e. in the equation  

dVdm   

corresponding (2.1) the voulme dV  is „physically infinitesimal”. The boundary transition 

0V   at low volume in mathematical sense leads to that the material belongs to V  will 

be qualitatively different. The boundary transition 0V   can be understood as V  tends 

to a volume 0V  which is quite large on the atomic scale but on the macroscopic scale it is 

small (small enough to be considered as point-like). It can be seen that the continuum me-

chanical and atomic description methods can be compatible. In continuum mechanics we get 

the simplified descripiton of large groups of atoms thus we obtain relative simple equations. 

We deduce general laws hence further equations characterising the specific properties of the 

material are always necessary. These are the material equations containing so-called „material 
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constants” (e.g. elastic moduli) which reflect the neglected atomic features. In continuum me-

chanics the functions representing physical quantities are fractionally continuous, i.e. it may 

be exist surfaces in the media (eg. layer boundaries) along which the respective quantities 

suffer finite "hop". Boundary condition equations defined along these surfaces must be met. 

 

2.1. Deformations and strains 

After the axiom of the kinematics of deformable bodies the general movement (if it is 

quite small) of sufficiently small volume of the deformable body can be combined by a trans-

lation, a rotation and an extension or contraction took in three orthogonal directions. In the 

framwork of continuum mechanics the displacement is given by the continuous vector  t,rs


. To illustrate the meaning of the axiom of kinematics let us take up the coordinate system in 

the point 0P  of the deformable continuum and consider point P  (originated from the small 

volume assumed around 0P ) close to 0P . During the movement of the continuum P  pass 

through point 
'

P  satisfying the vector equation 

sr'r


 , 

where s


 is the displacement vector „connencting” points P  and 
'

P . Assume that fracture 

surface is not extend between points P  and 
'

P . Then the two (adjacent) points can not move 

independently of one another, there is a „material relationship" between them defined by the 

continuum material. 

This can be expressed mathematically that the displacement in point P  is originated to 

characteristics refer to point 0P , or in other words the displacement is exerted into series 

around point  0,0,0P0 : 
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where … means  other "higher parts" appearing in the expansion and index 0  indicating next 

to the derivatives refers to that the derivates should take in the origin ( 0P ). 

In the axiom of kinematics we talk about the “displacement of sufficiently small volume”. It 

means that in equations (2.1.1) the "higher parts" containing the powers and products of co-

ordinates 321 x,x,x  are negligible, i.e. we live with a linear approximation. In addition, we 

also assume that the first derivatives are small in the sense that their product and powers are 

negligible. Herewith (2.1.1) takes the following form 

 
3,2,1i,x

x

u
uu

3

1j

j

0
j

i0

ii 

















 



 (2.1.2) 

In the followings, we will apply the so-called Einstein's convention with which (2.1.2) 

can be written as 

 
j

0
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uu
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
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i.e. if an index (or indices) in an expression occurs twice we should sum from 1 to 3. In the 

followings the index 0 beside the derivatives 
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
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  (2.1.3) 

The derivative tensor 
j

i

x

u




 can be divided into symmetric and antisymmetric parts as 
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With this we obtain the following equation for the (2.1.3) displacements  
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(2.1.4) 

where 
 0

iu  is the same for any points of the small volume taken around 0P , i.e. 
 0

iu  means 

homogeneous translation for the movement of these points 
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      .u,u,us
0

3

0

2

0

1transzl


 

Introducing the notation 

srot
2

1 
  (2.1.5) 

it can be easily seen that the second part in (2.1.4) equals to the vectorial product [ 


, r


] 

which describes the rotational displacement 

 







 r,srot

2

1
srot


. 

Thus, it is obvious that the third part of (2.1.4) provides the deformation displacements  

      d

3

d

2

d

1def u,u,us 


, 

where  

 
.x
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u
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u

2
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u j

j

j

j
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


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
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









  (2.1.6) 

Introducing the notation 
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(2.1.7) 

 (2.1.6) can be reformulated as 

 
jij

d

i xu  ,

 

(2.1.8) 

where the symmetrical second-order tensor ij  called deformation tensor. 

To clarify the components of the deformation tensor take a material line in unit length 

along the coordinate axis 1x  of the original coordinate system and denote it as vector 

 0,0,1ir 


. During deformation this transforms to vector  

 311211

'

1 ,,1r 


 (2.1.9) 

due to equation (2.1.8), according to the equation 

 sr'r


 . 

Hence the relative expansion is  

  11

222

11

'

1
11

i

ir

3112
 






, 
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as we limit ourselves to small deformations  1,, 332211  .  

Thus deformation 11  means the expansion of the section in unit length taken along axis 

1x  or in other words the relative expansion measured along axis 1x . Elements 3322 ,  have 

similar meaning. Elements in the main diagonal of the deformation tensor give the relative 

expansion of the material line sections falling into axes 321 x,x,x . To investigate the meanings 

of the elements outside the main diagonal let us take the unit vector j


 falling into the direc-

tion of the coordinate axis 2x  which after deformation transforms into vector 

 322221

'

2 ,1,r  


. 

By equation (2.1.9) plus forming the scalar product  '

2

'

1 r,r


 and neglecting the squares as well 

as products of deformations one obtains 

  12

'

2

'

1 2r,r 


. 

Applying 

  cosrrr,r
'

2

'

1

'

2

'

1


 , 

where 1rr
'

2

'

1 


 and the angle between the two vectors is 




 
2

 

results as  

122  , 

where  sin  was used to small angles. Ergo deformation 12  is the half of the angle change 

which is suffered by the line section taken in the originally perpendicular directions i


 and j


. 

Take a prism with a volume abcV   and with edges parallel to the coordinate axes in 

the undeformed continuum! The volume of the prism generated during deformation will be 

approximately 

   abcε1ε1ε1V' 332211   

i.e. the relative volume change is 
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332211
V

V'V
 


 . 

The sum of the elements in the main diagonal of the deformation tensor (a.k.a. the spur 

of the deformation tensor or the invariant of the first scalar) means the relative volume change. 

Contrariwise one can expresses it with equation 

qq   

 (summarize to q !), or on the basis of definition (2.1.7) of the deformation tensor 

sdiv
x

u

x

u

x

u

3

3

2

2

1

1 















 . (2.1.10) 

This quantity is unchanged during coordinate transformation. 

To characterize the deformations it is used to introduce the spherical tensor 

ikqq

)0(

ik
3

1
E   (2.1.11) 

and the deformation deviatoric tensor 

ikqqikik
3

1
E   , (2.1.12) 

where ik  is a unit tensor i.e. 













kiha,0

kiha,1

ik . 

The name is originated in that the second-order tensor surface ordered to the deformation 

spherical tensor is sphere. With this tensor the pure volume change can be separated from the 

deformations. The remaining part of deformations ikE  shows the deviation from the pure 

volume change, i.e. the so-called distortion. It is obvious according to (2.1.12) that 0Eqq  . 

The decomposition of the deformation tensor 

)0(

ikikik EE   (2.1.13) 

means also the pick apart it to the volume change-free "pure distortion" and the pure volume 

change. The dynamic interpretation of the movement of the continuum requires to introduce 

the force densities. Experiences show that the forces affecting on the continuum can be di-

vided into two types: volume and surface forces. The volume force Fd


 - affecting to the 
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continuum contains the (physically) infinitesimal volume element dV  took at a given point 

of the space - can be written as 

dVfFd
*


 , 

where 
*

f


 is the volumetric force density. The integral of the volumetric force density  

dVfF
V

*




 

gives the force affected to finite volume. The volumetric force density can be calculated oth-

erwise by the definition 

V

F
limf

0V

*











 . 

There are forces that are physically directly proportional not to the volume, but the mass. 

These can be characterized by the mass force density 

m

F
limf

0m 









 , 

where m  is the mass contained in the volume V . With which  

*

0V
f

1

V

F

m

V
limf















 

or otherwise 

ff
*


 . (2.1.14) 

Another class of forces arising in the continuum are the surface forces. The surface force 

density can be formulated as 

A

F
lim

0A
n













 , (2.1.15) 

where the boundary transition 0A  can be interpreted as A  tends to a so small surface 

0A  which is negligible (point-like) in macroscopic point of view but it is very large compared 

to the atomic cross section. Otherwise equation (2.1.15) can be written as 

 dAF n


  . (2.1.16) 
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In (2.1.16) „index” n


 implies that the surface force at a given space depends on not only the 

extent of the surface but its direction - characterized by the normal unit vector n


 - too. Based 

on (2.1.16) the force affected on the finite surface A can be calculated as 


A

n dAF 

 . (2.1.17) 

Since the unit normal vector n


 can point to infinite number of directions apparently the 

knowlege of infinitely many surface force densities is necessary to provide the surface forces. 

However it can be proved that  

.nnn 3x2x1xn 321



   (2.1.18) 

This equation shows that if we know in one point the surface force density 
ix


 affected on 

three orthogonal coordinate plane then surface force densities (also known as strains) affected 

on any n


 directional surface can be calculated by the help of equation (2.1.18). 

Introducing the notations 

 
321 nnnn ,,  


 

 131211x ,,
1

 


 

 232221x ,,
2

 


 

 333231x ,,
3

 


 

 (2.1.18) can be written as  

 3,2,1i,n jijni
  (2.1.19) 

(where according to our agreement one has to summarize to j from 1 to 3). Ergo after (2.1.19) 

to characterize the surface force density the second-order tensor ij  is introduced which is 

the j-th component of the strain vector affected on the surface supplied with a normal pointing 

to the direction of the i-th coordinate axis. It can be proved that this tensor is symmetric, i.e. 

.jiij    

The elements 332211 ,,   in the main diagonal of the tensor are normal directional (tensile 

or compressive) stresses, the outside elements 231312 ,,   are tangential (shear or slip) 
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stresses. Similarly at the deformation tensor one can produce the stress tensor as the sum of 

the deviator and the stress spherical tensors. 

 
,TT

0

ikikik   (2.1.20) 

where 

 
ikqqikikikqq

0

ik
3

1
T,

3

1
T   , (2.1.21) 

and qq  is the sum of the elements in the main diagonal of the stress tensor. 

 

2.2. The motion equation 

At the deduction of the motion equation of deformable continua the starting pont is Newton's 

II. law which says that the time-derivate of the impulse of the body equals to the sum of the 

arose forces 

 F
dt

Id 


. 

The impulse of the body can be determined by the formula 


V

dViI


 

where 

v
V

mv
limi

0V













 

is the volumetric impulse density,  while 
t

s
v









 is the velocity. The resultant force affecting 

the body is the sum of the volume and surface forces, i.e. 

.dAdVfF
V A

n   

  

The integral form of the motion equation can be written as 

    

,dAdVfdVv
dt

d

tV tA

n

tV

   

  

where )t(V , )t(A  are the volume as well as surface moving together with the continuum. To 

the i-th coordinate of the vector equation one can obtain 
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    
  

tV tA

n

tV

ii dAdVfdVv
dt

d
i

 . (2.2.1) 

To transform the latter equation use the identity 

 
  

 














tV tV

dVvdiv
t

dV
dt

d 



  

and the Gauss-Osztogradszkij thesis 

         

,dVdivAddAdAndA
tV

i

tA

i

tA

jij

tA

jij

tA

ni   


 

where dAndA jj   and 

 3i2i1ii ,,  


 

denotes - as a formal vector - the i-th row of the stress tensor. Here the equation (2.1.19) was 

also used. Now the motion equation (2.2.1) can be written as 

 
 

 

.0dVdivfvvdiv
t

v

tV

iii
i 













 

 
 

Hence volume )t(V  is arbitrary, from the disappearance of the integral one can infer to the 

disappearance of the integrand 

 
  ,divfvvdiv

t

v
iii

i 
 





 

otherwise 

 
  .

x
fvvdiv

t

v

k

ik
ii

i








 


 
 (2.2.2) 

This is the local form of the motion equation of the deformable continuum, also known as the 

balance equation of the impulse. 

In continuum theory equations describing the transport of extensive quantities can be 

commonly reformulated to the format of the continuity equation. If the bulk density of a quan-

tity is w  then the convective current density of the given quantity is denoted as  
vwJ

konv

w




. 
 kond

wJ


 represents the conductive (connected to macroscopic motions) current density. Then 

the balance equation of quantity w  is 
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  ,0JJdiv
t

w kond

w

konv

w 


 
 

or if it has sources (or sinks) 

  ,JJdiv
t

w kond

w

konv

w 


 
 (2.2.3) 

where   is the source strength which provides the quantity of w  produced or absorbed in 

unit volume per unit time. 

Introducing the convective  
vvJ i

konv

imp


  and conductive    ik

kond

impJ 


 impulse-cur-

rent density vectors equation (2.2.2) can be written as 

       i

kond

imp

konv

imp
i fJJdiv

t

v







 
. 

Ergo the stress tensor (that of onefold) is physically the conductive impulse current density, 

while volumetric force density if  plays the role of the source strength of the impulse. It is 

well-known that similar balance equation can be formed to (mass) density  j  of the j-th 

component of a fluid compound 

        j
kond

m

konv

m

j
JJdiv

t







 
, 

where the convective mass flow density is 
 

  vJ j

konv

m


 . The conductive mass flow den-

sity provides a way to decribe the diffusive motions, source strength  j  refers to the chem-

ical reaction which gives the production of the j-th component. To one-component fluid by 

neglecting the source strength the continuity equation 

  0vdiv
t




 



  (2.2.4) 

provides the balance equation of the mass. By transforming the left side of equation (2.2.2) 

one can obtain  

 
k

ik
ii

i
i

x
fvgradv

t

v
vdiv

t
v































 


 
, 

where the identity 

  )a(gradAAdivaAadiv


  
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was used (where a  and A


 are the continuous function of the three spatial coordinates). By 

taking into consideration the continuity equation, (2.2.2) can be written as 

k

ik
ii

i

x
fvgradv

t

v

















 



. 

We call the partial derivate 
t


 otherwise local, while the operator gradv


 is the convective 

derivate and  

gradv
tdt

d 





   

is the substantial derivative. Hereby the motion equation can be written as 

k

ik
i

i

x
f

dt

dv







 . (2.2.5) 

In solid continua the convection can be negligible thus 
tdt

d




  and the motion equation is 

k

ik
i2

i

2

x
f

t

u








 
 . (2.2.6) 

In vector form 

   Divfvgradv
t

v













 


, (2.2.7) 

corresponds with the motion equation (2.2.5), while 

 Divf
t

s
2

2




 
 (2.2.8) 

refers to equation (2.2.6), where Div is the sign of the tensor divergence and the double un-

derline denotes the tensor. 

The continuity equation (2.2.4) and equation (2.2.5) are the continuum mechanical for-

mulation of the mass conservation and the impulse thesis respectively, i.e. express general 

(valid for any continuum) law of nature. However there are 10 scalar unknowns in these four 

scalar equations (assuming the mass forces if  as knowns). Thus equations derived from nat-

ural basic law are significantly underdetermined, so unambigous solution can not be existed.  
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To clearly describe dynamically the movement of the continuum more six equations are 

required which can be obtained on the basis of restrictive conditions took to the material qual-

ity of continuum and its elastic properties. These equations are the material equations wrote 

to the six independent elements of the stress tensor. 

 

2.3. Material equations 

Elastic properties of material continua are very diverse. A general material equation which 

comprise all of this variety, does not exist. Instead, one should highlight from all elastic prop-

erties of the investigated medium the most relevant ones and neglect the other "disturbing" 

circumstances. This can be expressed differently i.e. we create a model. The most important 

simple and complex material models built from the simple ones will be described in the fol-

lowings especially considering the rock mechanics and seismic/acoustic aspects. 

 

2.3.1. Material equation of the perfectly elastic body, stress dependent elastic parame-

ters  

Perfectly elastic body means that stresses depend on the deformations dominant at a given 

space of the continuum in a given time, i.e. 

 231312332211ikik ,,,,,f   . (2.3.1) 

The function ikf  is generally non-linear. However, very often we deal with small stress 

change related to small deformations. For example, if an elastic wave propagates in a medium 

existed in a given stress state, the wave-induced deformation and stress perturbation is very 

small compared to the characteristics of the original, static load of the medium.  

In this case, the function ikf  can be approximated by the linear parts of its power series 

 


 



 




0

6

1

0
f





















 , (2.3.2) 

where the notations 

 231312332211 ,,,,,     

 231312332211 ,,,,,    
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were introduced. The constants 

0

f
c






 

















  are named elastic constants which character-

ize the perfectly elastic body near the undeformed state. Obviously, the series expansion can 

be performed around any deformation state, when 

 
  

0
, 

 
  

0 . 

Then  

    
 



 



 





0

6

1

00
f

f 



















 , 

or because of     00
f      

 



 



 





0

6

1

f




















 . (2.3.3) 

Small deformations   superposed to the basic (or equilibrium) deformation are -sim-

ilary to (2.3.2) - connected to stress change   by the equation (2.3.3), but elastic „con-

stants” 

  
 0

f
c

0









 
















  

depend on the basic deformations. If the function    f  can be inverted, i.e. 

)(g     the elasic properties )(c   depend on stress state. This is supported by the 

seismic experience that the velocity of elastic waves is a function of in-situ stress state. Since 

the propagation velocity depends on elastic moduli one can see that the model of the perfectly 

elastic body can be phenomenological suitable to describe the velocity/pressure relationship 

through the pressure-dependent moduli. Of course the production of the appropriate materials 

equation depends on rock type and rock quality. 

Since waves mean small deformation, this time the series expansion (2.3.3) provides 

good approximation. Elastic parameters 

0

f
c 


























 in (2.3.3) form a 6x6 matrix. It can be 
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proved by the help of the energy thesis formulated to continua, this matrix is symmetric. This 

means that in general case, the elastic properties of the anisotropic continuum can be charac-

terized by 21 independent elastic parameters. The properties of material symmetry can signif-

icantly reduce the number of elastic constants. Isotropic continuum can be characterized by 

two elastic constants. In case of several practical instance, linear approximation (2.3.3) de-

notes a good approximation but in seismics apart from explosion issues. That material model 

in which (2.3.3) is valid for not only small deformations, is called the model of linearly elastic 

body. In small deformation interval the model of perfectly elastic body transforms to linearly 

elastic body. 

 

2.3.2. Material and motion equation of Hooke-body 

The phenomenological description of anisortopy is very important in rock physics and seismic 

too. However, the simplification is reasonable in seismic practice the most widely used line-

arly elastic medium model assumes isotropy. The linearly elastic isotropic body is character-

ized by only two elastic parameters which can be introduced a number of ways. With thermo-

dynamic considerations the two parameters are the so-called first   and second   Lame 

coefficients with which the material equation of the linearly elastic isotropic body or Hooke-

body can be written as 

.2 ikikik    (2.3.4) 

Hence to the main diagonal of the stress tensor one can obtain the equation  

 K3qq  , (2.3.5) 

where 
3

2
K   is the compression modulus. 

Introducing the stress spherical tensor 

 
ikqq

0

ik
3

1
T  , 

on the basis of (2.3.5) its relationship with the deformation spherical tensor is  

   0

ik

0

ik EK3T  . (2.3.6) 

The stress deviatoric tensor 
 0

ikikik TT   after (2.3.4) is 

ikik E2T  . (2.3.7) 
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The material characteristic parameters   and   are generally depend on temperature too.  

In engineer life instead of Lame coefficients the Young's modulus E  and Poisson's num-

ber m  are often used. In case of uniaxial load (e.g. a thin long rod clamped at one end, its 

other end is pulled) if 1x  is axial, the tensile is 

,E 1111    (2.3.8) 

so the Young's modulus E  can be determined directly. In the plane perpendicular to the ten-

sion the deformations 3322 ,  have opposite sign and proportional to the relative expansion 

11  

,
m

1
113322    

where m  is the Poisson's number. The relative volume change is 

.
m

2m
11332211 


  (2.3.9) 

Since in case of 011   (stretching) the volume can not decrease  0  so from (2.3.9) 

2m  . The equality refers to incompressible materials  0  (e.g. static load in fluid). 

To look for the relationship of parameters  ,  and m,E  write the expression of   

(2.3.9) to (2.3.4). At uniaxial load 

1111
m

2m
2  







 
 , (2.3.10) 

on the other hand because of 11qq    (since there is only one stress component exists) 

  1111
m

2m
23 


 . (2.3.11) 

By comparing the equations (2.3.10) and (2.3.11), as well as (2.3.8)  













12m ,  

 



23E 


   

or 
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 
E

1m2

m


 , 

   
E

2m1m

m


 . 

One can obtain the motion equation of the linearly elastic isotropic body if one substi-

tutes the material equation (2.3.4) to the general motion equation (2.2.6.). By forming the 

divergence of the stress tensor (2.3.4) in case of homogeneous medium (   and  are inde-

pendent from location) 

ik

kik

k

2

kk

i

2

k

ik

xxx

u

xx

u

x

























, 

where the definition (2.1.7) of the deformation tensor was used and one must sum for the same 

indexes. Since  

ik

k

iik

k

2

xx

u

xxx

u

















 
 

and 

i

ik

k xx 






 



, 

the motion equation can be written as 

 
i

ii2

i

2

x
uf

t

u








 
 , (2.3.12) 

in vectorial form by using (2.1.10) 

  sdivgradsf
t

s
2

2 

 



. (2.3.13) 

This equation alias the Lame equation is the motion equation of the linearly elastic homoge-

neous body (Hooke-body). Mathematically (2.3.13) is an inhomogeneous, second-order non-

linear coupled partial differential equation system. To obtain its unambiguous solution initial 

and boundary conditions are necessary. Setting the initial value problem means that we require 

the displacement  0,rs


 and velocity  0,rv


 at each point of the tested V  volume in 0t  . 
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Boundary conditions require the displacement  t,rs
*

 and the value of the directional (nor-

mal) derivative 
n

s







 at any t  time in 

*
r


 points of the surface A  bounding volume V . 

In case of inhomogeneous linearly elastic isotropic body the „Lame coefficients” depend 

on space:    .x,x,x ,x,x,x 321321    So the divergence of the stress tensor (2.3.4) can 

be written in the form 

  sdiv
xx

u

xx

u

x
sdiv

x
u

x ii

k

kk

i

ki

i

k

ik 































 



. 

With which the motion equation is 

  sdiv
xx

u

xx

u

x
sdiv

x
uf

t

u

ii

k

kk

i

ki

ii2

i

2 































 
   

or in vectorial form  

 

    sdivgradsrot,gradsgradgrad2

sdivgradsf
t

s
2

2
















  

where  srot,grad


  denotes vectorial multiplication. 

 

2.3.3. Fluid mechanical material models and their motion equations 

Fenomenoligical definition of fluids is based on the experience that the smaller the tangential 

(shear) stresses occurring in fluids are the slower the deformation is. By extrapolating this 

observation we consider that continuum as fluid, in which shear stresses do not occur in repose 

state, i.e. elements outside the main diagonal of the stress tensor are disappeared in every 

coordinate system. In isotropic fluids, elements in the main diagonal are equal, i.e. the stress 

tensor in repose state is 

ikik p  , 

where p  is the scalar pressure. 

 

Material and motion equation of ideal fluid (Pascal’s body) 

We call that fluid ideal in which shear stresses during motion do not occur, i.e. the stress 

tensor of the ideal fluid for any deformation is 
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ikik p  .  (2.3.14) 

Since then 

 
ik

0

ikT  , 

the stress tensor of the ideal fluid is a spherical tensor. This is another formulation of the well 

known - from fluid mechanics - Pascal's law, therefore the ideal fluid called otherwise Pascal's 

body. 

Equation (2.3.14) only makes constraint to the format of the stress tensor, but it is not a 

material equation. The material equation usually connects the stresses with kinematic charac-

teristics. In contrary in fluid mechanics the pressure is investigated in density and temperature 

dependence. For example if pressure depends on only density 

 pp  , 

we talk albout barotripoic fluid.  

Equation (2.3.14) is valid in case of gases too. The state equation of ideal gases can be 

written as 

R
T

p



, 

where R  is the gas constant and T  is the absoulte temperature. The state equation is simpler 

in case of special change of state. E.g. at isothermal processes 

konstans
p




, 

while in case of adiabatic change of state 

konstans
p




, 

where ,
c

c

v

p
  pc  is the specific heat mesured at constant pressure as well as vc  is at constant 

volume, respectively. Based on (2.2.5) and (2.3.14) the motion equation of the ideal fluid is 

i

ii
i

x

p
fvgradv

t

v





















 

or in vectorial form  
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  pgradfvgradv
t

v













 


  . (2.3.15) 

This equation is the so-called Euler-equation. 

 

Material and motion equation of the Newtonian fluid 

The ideal fluid model not enables to describe a number of practical problems. It is a general 

experience that waves absorb in fluids or friction losses occur in fluids during flowing. To 

explain these phenomena an improved fluid model is required. 

At the phenomenological definition of fluids we highlighted that shear stresses are the 

smaller the slower the deformation is. This means that stresses in fluid originated from friction 

depend on the swiftness of the deformations, the deformation velocity tensor 

 




























i

k

k

iik
ik

.

x

v

x

v

2

1

t


   

i.e. 









 23

.

13

.

12

.

33

.

22

.

11

.

ikik ,,,,,f'  . 

In terms of geophysical applications only the isotropic fluids have significance which show 

linear depencence in deformation velocities. Then (because of the isotropy) writing the tensor 

ik

.

  instead of deformations ik  in the (2.3.4) formula of the tensor ik , one obtains the 

material equation  

ik

.

ik

.

ik 2'   , (2.3.16) 

where   and   are the viscous moduli. This is the material equation of the Newtonian fluids 

(Newton's body). Introducing the deformation velocity spherical tensor 

 

ik

.0

ik

.

3

1
E   

and the deformation velocity deviator tensor 

ik

.

ik

.

ik

.

3

1
E    

equation (2.3.16) can be divided into two tensor equations 
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 
 0

ik

.

v

0

ikik

.

ik E3T ,E2T   , (2.3.17) 

where 
3

2
v   is the so-called bulk viscosity. 

In reality, to describe the frictional fluids the material equations of the Pascal’s and New-

ton's body should be combined, i.e. the total stress tensor is 

ik

.

ik

.

ikik 2p   . 

By forming the divergence of the tensor and using (2.3.16) one obtains 

 
1

1

ikk

i

2

ik

ik

x

v

xxx

v

x

p

x 
























, 

with which the motion equation (2.2.5) can be written as 

  vdiv
x

v
x

p
fvgradv

t

v

i

i

i

ii
i 























 , (2.3.18) 

or in vectorial form 

    vdivgradvpgradfvgradv
t

v 


 












.  

This is the motion equation of frictional fluids, i.e. the Navier-Stokes equation. 

 

The Navier-Stokes fluid 

Experiences denote that (relative to the sound velocity), at low-velocity flows and low fre-

quency sound waves the bulk viscosity in (2.3.17) can be considered approximately zero. (The 

measurement of v  is difficult because of this small effect which becomes possible primarly 

in case of high-frequency ultrasound experiments.) Therefore the Newton-model can be con-

stricted in seismic and rock mechanical applications. It allows us to create a new fluid model 

in which because of 0v   


3

2
 , (2.3.19) 

therefore the stress tensor instead of (2.3.16) is 









 ik

.

ik

.

ik
3

1
2'  , (2.3.20) 
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and due to (2.3.20) equation (2.3.17) is 

 
0T ,E2T

0

ikik

.

ik   . (2.3.21) 

Equations (2.3.20) or (2.3.21) are the material equation of the so-called Navier-Stokes’s body. 

Due to (2.3.19) the motion equation (2.3.18) can be written as 

vdiv
x3

v
x

p
fvgradv

t

v

i

i

i

ii
i 






















 
 , 

or in vectorial form 

  vdivgrad
3

vpgradfvgradv
t

v 



 













. 

 

2.3.4. Rheological material models and their motion equations 

The material equations of Hooke’s body (2.3.4) and Newton’s body (2.3.16) in elastic aspect 

describes two important limit cases of isotropic material continua: the limit case of stresses 

depends on only the deformations (2.3.4), as well as depends on (linearly) only the defor-

mation velocity (2.3.16) respectively. In reality, the stress tensor of the medium (in more or 

less scale) depends on the deformations and the deformation velocities 











.

ikik ,f  , 

or otherwise the material equation can be written in the general form of 

0,,F
.

ikikik 







 . (2.3.22) 

In many cases, this material equation can be produced according to the equations (2.3.4) and 

(2.3.16) or (2.3.4) and (2.3.20), in other words the material model describing the elastic prop-

erties of the medium can be built from Hooke’s and Newton's body or Navier-Stokes’s body. 

In this case we are talking about a complex material model. Often, the stress change velocity 

tensor ik

.

  plays a role in the material equation, i.e. the material equation is 

0,,,F
.

ikik

.

ikik 







 . (2.3.23) 
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The function F  is usually linear appearing in (2.3.22), (2.3.23), the so-called rheological 

equations. Then the stress tensor is the linear expression of tensors
.

ikik ,  and 
.

ik  to which 

one will see some examples in the followings. 

 

The material and motion equations of the Kelvin-Voigt’s body 

The Kelvin-Voigt model shows the simpliest combination of the Hooke’s and Newton’s body. 

Figure 2.1. illustrates the model. 
 

 

Figure 2.1.: Model of the Kelvin-Voigt’s body 

 

The spring models the Hooke's body, while the perforated piston moving in the viscous 

fluid-filled cylinder models the Newton's body. In case of one-dimensional motions it is ob-

vious that the displacements on the two body parts are equal, while the sum of the forces arose 

in the two branches of the model are equal to the forces affected to the model. This simple 

criterion can be generalized as follows  

   N

ik

H

ikik    (2.3.24) 

   N

ik

H

ikik   . (2.3.25) 

By using the material equations (2.3.4) and (2.3.17), (2.3.24), (2.3.25) provides the following 

result 

ik

.

ik

.

ikikik 22    (2.3.26) 
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which is the material equation of the Kelvin-Voigt’s body. Based on (2.3.26) to the stress 

deviator tensor one obtains 

ik

.

ikik E2E2T    (2.3.27) 

or by introducing the so-called retardation time 




    

one gets the equation 

ikik E2
t

1T 











 . (2.3.28) 

One can see that in case of slow processes this material equation pass through the material 

equation of the Hokke’s body. If 0t  is the characteristic time of the process then 
0

ik

t

E
 gives 

the order of magnitude of the derivative. In case of slow processes 

1
t0




 

then indeed ikik E2T  . In case of fast processes 

1
t0




, 

then the equation (2.3.28) can be approximated by  

ik

.

ik E2T   

which is the deviator equation of the Newton’s body due to  22  . 

The equation of the sperical tensors are 

   
)0(

ik

.

v

0

ik

0

ik E3EK3T  , (2.3.29) 

where 
3

2
,

3

2
K v  . 

If the Navier-Stokes’s body describes the viscous forces instead of Newton’s body, the devi-

ator equation remains unchanged but for the equation of the spherical tensor instead of 

(2.3.29) one obtains  
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   0

ik

0

ik EK3T  . (2.3.30) 

This approximation is adequate for the description of rock mechanical and seismic phenom-

ena in many cases.  

Solve the differential equation (2.3.28) to analyze the properties of the Kelvin-Voigt’s 

body. Introducing the notation ikikik E2TG   to (2.3.28) one gets the equation 

ik

.

ikik

.

TG
1

G 


. (2.3.31) 

We look for the solution by the method of varying constants in the following form 

  

t

ikik etcG


 . (2.3.32) 

To the function ikc  from (2.3.31) one obtains the equation 

 tTec ik

.
t

ik

.
   

from where  

  ik

t

0

ik

.
't

ik K'dt'tTec  
 , 

where ikK  is constant. Thus based on (2.3.32) the solution of (2.3.31) is 














 



'dt)'t(TeKeE2T

t

0

ik

.
't

ik

t

ikik
 . (2.3.33) 

The initial condition in 0t   is specified in the form of 0E,)0(TT ikikik  , therefore 

),0(TK ikik  so from (2.3.33) one gets the equation 

 













 




tdTee)0(TT
2

1
E

t

0

ik

.
'ttt

ikikik



. (2.3.34) 
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One can see that the deformations ikE  are differ from the value ikT
2

1


 according to the 

Hooke’s body and show explicit time dependence. If e.g. we consider that special case when 

we load the Kelvin-Voigt’s body by constant stress ,0T ik

.









  then due to )0(TT ikik   





















t

ikik e1)0(T
2

1
E , 

i.e. deformations approximate asymptotically the value 
 

)0(T
2

1
E ikik





 got based on the 

Hooke’s model. Parameter   clarifies the velocity of this approximation. This is that time 

during which ikE  puts the 









e

1
1 -fold of the asymptotic value on. 

Since the deformation of the Kelvin-Voigt’s body reaches the value belongs to the 

Hooke’s body only delayed (retarded), the rheological parameter   is called retardation time. 

The rock mechanical process described above and illustrated in Figure 2.2. is called creep. 

 

 

Figure 2.2.: The phenomenon of creep and the geometric meaning of parameter   

 

Returning to the general equation (3.2.34), by partial integration one obtains from it an 

initial condition independent formula  

  'dt'tTe
2

1
E

t

0

ik

'tt

ik 



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
. 
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Herewith – contrasting the Kelvin-Voigt’s body with the Hooke's body - an example can be 

seen to that the deformations in the body in given time t  depend on not the value of the 

stresses in the same time but the stesses took in the previous interval  t,0 . 

One obtains the motion equation of the Kelvin-Voigt’s body by substituting the ma-

terial equation (2.3.26) to (2.2.6). 

    vdiv
x

vsdiv
x

uf
t

u

i

i

i

ii2

i

2 














 , (2.3.35) 

or in vectorial form 

    vdivgradvsdivgradsf
t

s
2

2 

 



. (2.3.36) 

 

The material equation of the Maxwell body 

As it was presented, the Kelvin-Voigt body built up from the Hooke and Newton bodies be-

haves as linearly elastic body in case of static border-line case, and as viscous fluid in case of 

fast processes. Another material model can be built up from the Hooke and Newton bodies as 

well, which acts like fluid in slow processes and as elastic solid continuum in fast ones. This 

is the model of the Maxwell body illustrated sematically in Figure 2.3. 

 

 
Figure 2.3.: The model of the Maxwell body 

 

Thinking about the one dimensional motions based on the figure it can be seen that the 

same forces arise in the two elements of the model and the sum of the displacements of the 

two elements is equal to the total displacement. Generalized this, the eqations  
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   N

ik

H

ikik     

   N

ik

H

ikik    (2.3.37) 

can be used as basic equations in the deduction of the model’s material equation. Based on 

the material equations of the Hooke and Newton bodies 

   
ik

HH

ikik 2    (2.3.38) 

and 

   

ik

N.N

ik

.

ik 2   . (2.3.39) 

From (2.3.38) the    H

qq 23   , or  
.

23

qqH







  With this the equation 

 












 ikqqik

H

ik
232

1








  

can be obtained for the  H

ik  deformations similarily from (2.3.38). However according to 

(2.3.37) 

 












 ikqqikik

N

ik
232
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


 , 

 






23

qqN


  

and so the material equation of the Maxwell body can be written based on (2.3.39) as 

ikqq

..

ik

.

ik

.

ik
23

2 







































 . (2.3.40) 

For the trace of the tensor the 

 
.

qq

.

qq 23
23

23





 




  

equation, and so for the sphere tensors the 

 
   0

ik

.

v

0

ik

.

o

0

ik E3TT    (2.3.41) 
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equation arise, where 

K23

23 v
0






 




  

is the volumetrical relaxation time. 

Constituting the difference of (2.3.40) and (2.3.41) the deviator equation can be deduced 

ik

.

ik

.

ik E2TT   , (2.3.42) 

where 



   is the relaxation time. 

Note that if we use Navier-Stokes body instead of the Newton body in the Maxwell 

model, then because of 0
3

2
v    from (2.3.41)  

,0T
0

ik   i.e. ikik T , hence the 

material equation of the Maxwell body can be written as 









 ik

.

ik

.

ik

.

ik
3

1
2  . (2.3.43) 

This approximation can often be applied in case of rocks. 

For slow processes ( 0t , 0t is the characteristic time of the process) the ik

.

T  deriva-

tive can be neglected in the equation (2.3.42). Then we get the ik

.

ik E2T   approximate 

equation. In case of slow processes the Maxwell body changes to the model of Newtonian 

fluid. In case of fast processes ( 0t ) ikik TT
.

 in equation (2.3.42), so the equation 

leads to the ik

.

ik

.

E2T   or ikik E2T   material equation. It means that the Maxwell body 

acts in this border-line case as a Hooke body. 

Looking for the solution of equation (2.3.42) in the form of 

  

t

ikik etcT


  

for the  tcik  function from (2.3.42) the following result can be obtained  

  'dt'tEe2c

t

0

ik

.
't

ik    

whereby 
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  .'dt'tEe2T

t

0

ik

.
'tt

ik 




   

It can be seen from the equation – setting the Maxwell body against the Newton body – that 

by the Maxwell body the stresses at a given t  time depend not only on the deformation veloc-

ities dominating at t , but all the ik

.

E  of previous times in the  t,0  interval influence the value 

of ikT . 

A typical property of the Maxwell body can be shown if the solution relating to time 

stationary deformations of equation (2.3.42) is derived. There the  

0TT ik

.

ik   

equation gives the result 



t

0

ikik eTT


  

(here the upper case 0  does not indicate the sphere tensor, but the value taken at 0t  !). The 

exponential loss of stresses is shown in Figure 2.4.  

 

 

Figure 2.4.: The phenomenon of stress relaxation, the geometrical meaning of the   parameter  

 

This phenomenon common in rocks is the release or relaxation of stresses. The   relax-

ation time is the time during the stresses decrease to the e-th part of the initial 0

ikT  value. The 

Maxwell model is basicly a fluid model, no stresses arise in it against static deformations. So 

it can be used only for explanation of dynamic features during describing rocks. 
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The material equation of the Poynting-Thomson body  

The previously introduced Hooke, Kelvin-Voigt and Maxwell models each took hold of one 

important side of elastic-rheological features of rocks: the Hooke body the resistance against 

the static deformations, the Kelvin-Voigt body the creeping, the Maxwell body the stress re-

laxation. The Poynting-Thomson model or standard body is a rock mechanical model which 

combines the Hooke and Maxwell bodies as it is shown in Figure 2.5. and it can describe the 

three phenomena simultaneously. The base equations are  

   M

ik

H

ikik   , 

   M

ik

H

ikik   , (2.3.44) 

where    M

ik

M

ik ,  are the deformation and stress arising in the Maxwell body. 

 

 

Figure 2.5.: The model of the Poynting-Thomson body 

 

The material equation of the standard body can be obtained after adding the equations (2.3.40) 

and (2.3.4) together with marking the material properties of the Maxwell body with ' in 

(2.3.40) 

  ikqq
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











 .  

Regarding the equation as sum of a sphere and a deviator tensor the deviator tensor can be 

derived as  
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ikik T
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


 








 , (2.3.45) 

while the eqation of the sphere tensor has the form of 

   
   0

ik

.0

ik

.
0

ik

0

ik T

'
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2
'

'
3
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'
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K
1'

3

2
'3EK3T




























 , (2.3.46) 

where '
3

2
''K   . 

If we use Navier-Stokes body instead of a Newton body in the Poynting-Thomson model 

0'
3

2
'v   , equation (2.3.46) has the more simple form 

   0

ik

0

ik EK3T  . 

This assumption is widely used during the description of many rock mechanical processes.  

Introducing the notations 









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
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00











  

the eqations (2.3.45), (2.3.46) can be written in the form  

ikik E2
t

1T
t

1 
























  (2.3.47) 

   
.EK3

t
1T

t
1

0

ik0

0

ik0

























   (2.3.48) 

The   and   quantities are called the deviatoric relaxation and retardation times respec-

tively, the 0  and 0  quantities are called volumetric relaxation or rather retardation time. It 

can be seen, that in the model    or rather 00    relations are valid.  



Continuum mechanical overview 

35 

The (2.3.47)-(2.3.48) equation system can be substituted with different equations de-

pending on the magnitude of the 0,,   and 0  rheological parameters. Their scope of va-

lidity can be given easily by marking the typical duration of rock movements with 0t . 

In case of phenomena varying very slowly in time, i.e. 

0t , or rather 00 t  

(2.3.47), (2.3.48) change to the material equation of linearly elastic body 

   0

ik

0

ikikik EK3T ,E2T   . 

 

In case of processes varying faster in time, assuming the 0  , or rather the 0   

relations phenomena can be distinguished, where 

0t  and 00 t . 

Then the equations found valid with a good approximation for practical rock mechanical pro-

cesses can be written (Asszonyi and Richter 1975)  

ikik E2
t

1T
t

1 
























  

   0

ik

0

ik EK3T  . 

In case of examination of more faster processes 

0t , 

the (2.3.47) changes again to the material equation of linerily elastic body 

ikik E2T



  

or in another form 

  ikik E'2T   . 

Depending on the relation of rheological parameters the connection between the sphere ten-

sors can be:  

a.) in case of   00 , , if 00 t the    0

ik

0

ik EK3T   eq. can be obtained.  

b.) if   00 ,  and 00 t , or rather 00 t  then beside the linear rela-

tionship between the deviatoric tensor, the rheological equation  
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    0

ik0

0

ik0 EK3
t

1T
t

1


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



















   

can be written between the sphere tensors. 

c.) if 0 , or rather 0  is in the order of magnitude of   or rather  , or the process 

is so fast that the relation
 

 00 t  

is fulfilled, then  

    0

ik

0

00

ik EK3T



 , 

or in other form 

      0

ik

0

ik E'KK3T  , 

i.e. both in the deviator and in the sphere tensors linear, but with greater elastic 

moduli ,'   or rather 'KK  compared to the K,  moduli manifested in 

slow (quasistatic) processes.  

To write the motion equation of a body following the material equation (2.3.47)-(2.3.48), 

let us solve the equations for ikT , or rather  0

ikT ! The equation (2.3.47) can be written as 

 
ik

.

ikikikik E21E2T
1

E2T 
















 . 

This inhomogeneous equation can be solved in ikik E2T   with the variation of constants 

method. Looking for the solution in the form of  

  

t

ikikik etcE2T


  

for the  tcik  coefficient the 

  ik

t

0

ik

.
't

ik K'dtEe12tc 







 






  

equation can be obtained, where ikK  denote constants. Using this the solution of the equation 

(2.3.47) can be written in the following form 
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






t

ikik

.t
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'tt

ikik eK'dtEe12E2T













  . (2.3.49) 

Based on the equation it can be pointed out that the stresses arising in a given time in the 

Poynting-Thomson body depend on all the ikE  values in the  t,0  interval.  

As we saw the Poynting-Thomson body is a Hooke body characterized by a '   Lamé 

constant in the case of fast processes. Let us assume that the body is loaded very fast with 

  0

ik

0

ik E'2T    stress (here the upper case 0  does not indicate the sphere tensor, but the 

value taken at 0t  !). Examinig a process starting from this initial state at 0t   

  ,KE2E'2 ik

0

ik

0

ik    

from which .E'2K
0

ikik   If the deformations do not vary in the following i.e. ,0Eik   from 

(2.3.49) 

.Ee'2T
0

ik

t

ik 















  

As it can be seen in Figure 2.6. the stresses decrease from the initial   0

ikE'2    value to 

the 0

ikE2  value. This is the relaxation phenomenon in case of the Poynting-Thomson body. 

 

Figure 2.6.: Stress relaxation in case of the Poynting-Thomson body 

 

If we assume that the examined rock mechanical phenomena proceed from the state of 

permanent equilibrium, we should specify as initial condition that the rock follows the 

ikik E2T   
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equation of a linearly elastic body at 0t  , i.e. .0Kik   In case of such phenomena the general 

solution of the equation (2.3.47) is 

'dtEe12E2T
ik

.t

0

'tt

ikik 












 




 . 

Since the eq. (2.3.48) corresponds with eq. (2.3.47) structurally, its solution can be written 

directly:  

     
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


. 

Equations (2.3.47), (2.3.48) can be solved for the deformations in a similar manner  
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 (2.3.50) 
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, (2.3.51) 

where ikA  and ikB  are the constants determined by the initial conditions.  

If the body is loaded vary fast by a 0

ikT  stress the arose deformations can be derived by 

the formula 
 '2

T
E

0

ik0

ik
 

  , since the standard body approximates the Hooke body in this 

process. For the processes starting from this state the relationship 
'

'0






 ikik TA  is valid 

based on the initial conditions. If the stresses do not vary later 




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
 0T ik

.

 the equation (2.3.50) 

can be written as
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Figure 2.7.: The phenomenon of creeping in the case of the Poynting-Thomson body  

 

As it can be seen in Figure 2.7. the formula describes the increase of deformations from the 

 '2

T
0

ik

 
 value to the 

2

T
0

ik  value. This phenomenon is called creeping. The Poynting-Thom-

son body can describe both the relaxation and creeping phenomena. 
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3. Wave propagation in elastic and rheological media 

 
The objective of geophysical investigations is mostly the determination of subsurface struc-

tures of the Earth - as material half space - by using surface measurements. For some meas-

urement methods (gravity, magnetic, geoelectric) the impact measured on the surface is inte-

grated in the sence that the quantity measured in a given point reflects theoretically the effect 

of the whole half space – but at least a space portion to a certain depth. It makes the interpre-

tation much easier if the measured effect yields information from a local area of a determined 

curve and not from the whole half space. This gives the “simplicity” of the analysis of rocks 

by elastic waves and its importance as well, because the laws of “beam optic” can be used for 

the wave propagation in a certain approximation. In the followings the most important features 

of elastic waves are reviewed with respect to the major material equations discussed previ-

ously. 

We deal only with low amplitude waves in our investigations. It means that the basic 

equations are solved with a linear approximation. There is a substantial derivate on the left 

side of the (2.2.5) general motion equation, where 

i
ii vgradv
t

v

dt

dv 





 , 

where ivgradv


 convective derivative means namely a nonlinear term. Its neglect requires 

the fulfilment of a simple criteria in case of waves.  If T  is the periodic time of the wave,   

is the wavelength, A  is the amplitude, then the order of magnitude is 

2
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t

v
,

T
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t

u
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
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
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i
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A
vgradv 


. 

The convective derivative can be neglected beside the 
t

vi




 local derivative if 

i

i vgradv
t

v 





 , i.e. 

22

2

2
T

A

T

A


 , i.e. A . If this criteria is fulfilled, then we can speak 

about (compared to the wavelength) low amplitude waves. In this case we can write the linear 

t

vi




 derivate instead of 

dt

dvi . 
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The assumption of homogeneous medium – especially if it has an infinite dimension – 

is unsubstantiated in geophysical aspect. We still use this approximation, because the most 

important properties of the wave space, the connection between the parameters characterizing 

the waves can be introduced most easily in case of wave propagation in infinite homogeneous 

medium. We do not have to consider boundary conditions during solving the differencial 

equations in infinite homogeneous space. It is a significant simplification. The so evolving 

waves are called body waves. (The assumption of infinite spreading is abstraction of course, 

which means the restriction that the surfaces - maybe existing in the medium - are very far 

from each other regarding to the wavelength.) In the followings the properties of body waves 

propagating in infinite homogeneous medium following different material equations are sum-

merized. 

 

3.1. Low amplitude waves in ideal fluid 

The motion equation of ideal fluid is given by (2.3.15). The low amplitude wave solution of 

the equation can be written in the following form  

pgrad
1

f
t

v


 



 
. (3.1) 

From the point of view of wave theory the importance of f


 mass forces is confined to the 

determination of equilibrium 00 p,  distributions. In equilibrium the 

00 pgradf 


  

statics base equation is valid. For example in case of air this equation determines the density 

and pressure distributions in the atmosphere of the Earth. This distribution is inhomogeneous, 

but the inhomogeneity occurs on a very large scale compared to the wave length (for example 

the wave length of a 100 Hz frequency sound has the order of magnitude of m, which is really 

small compared to the 10 km order of magnitude of the characteristic changes of the atmos-

phere). So the medium is locally homogeneous from the point of view of wave propagation, 

i.e. the equation (3.1) can be solved for homogeneous space. If the wave propagates through 

distances characterized by inhomogeneity, the changes in accordance with the place of local 

features (local propagation velocity) should take into account.  

As the f


 mass force field has no influence on the wave solution in the order of magni-

tude of wave length, we can apply the 0f 


 substitution in (3.1), i.e. 
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pgrad
1

t

v











. 

To solve the equation system there is a need for two more equations, for the 

  0vdiv
t




 



 

continuity equation and for a material equation, for example the  pp   barotropic equation 

of state. Assuming that the wave causes the small ','p   changes of the 00 ,p   equilibrium 

features, i.e.  

00 ',p'p    

the equation system can be linearized. Neglected the product of the v,','p


  quantities or their 

derivatives the following equations can be obtained 
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 (3.2) 

0vdiv
t

'
0 



 



 

'c'p
2

h  , 
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the divergence of (3.2) can be written as 
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If we compare this equation against (3.3) the 
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wave equation can be derived. The following equation can be similarly deduced as well 
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The monochromatic plane wave solution of the equations – according to  rkti

0 eˆ





  – 

can be written in the form of 

 rekti*
ep'p





 , 

 rekti*
evv

 


 . (3.4) 

These functions satisfy the wave equation, but the question is: are they the solution of the 

motion equation? As we get the equation 

0vrot 


 

after forming the rotation of eq. (3.2), it can be seen that the motion equation is fulfilled only 

in case of 0ev 


i.e. the displacement of the wave or rather the velocity of the displacement 

is parallel to the direction of wave propagation. The (3.4) function describes a longitudinal 

wave propagating with 

0

h

p
c 















 velocity. This solution of the motion equation of ideal 

fluid (Pascal body) is the sound wave. 

 

3.2. Low amplitude waves in isotropic linearly elastic medium 

The motion equation of the linearly elastic isotropic homogeneous medium is given by 

(2.3.13). As the f


  mass forces can be neglected during the analysis of the wave solution, 

the motion equation can be written in the following form 

  sdivgrads
t

s
2

2 


 



. (3.5) 

The s


 vector space, which gives the displacement field, can always be decomposed into the 

sum of a source-free and a swirl-free vector space 

lt sss


 , (3.6) 

where 

0sdiv t 


 (3.7) 

0srot l 


. (3.8) 

Using the identity  

lll ssdivgradsrotrot


   



Mihály Dobróka 

44 

for the 
ls


 vector space the following relationship can be written  

ll ssdivgrad


 .

Based on this equation the  
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formula can be derived by using (3.5). As the order of the partial derivation is interchangeable, 
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
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  

ensues from (3.5), i.e. the first term on the left side of (3.9) is source-free as well. It can be 

seen similarly that the second term in the brackets is swirl-free. As the sum of a source-free 

and a swirl-free vector spaces can be zero only if the two vector spaces are zeros separately, 

from (3.9) the   
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
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and the  

0
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
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
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equations can be deduced, where 











2
,


 . (3.12) 

Thus the motion equation gives a separated wave equations each for the source-free ts


 and 

the swirl-free ls


 vector spaces. 

The displacement vector potential can be introduced based on (3.7) with the equation 




rotst  , (3.13) 

while (3.8) can be satisfied trivially if the ls


 vector space is written as the gradient of the   

scalar displacement potential 

grads l 


. (3.14) 

The displacement field can be written as 
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


rotgrads   

based on (3.6), from (3.9) the equation  

  02
t

grad
t

rot
2

2

2

2







































 

can be derived. It is again a sum of a source- and a swirl-free vector space, therefore the  

0
t

1
2

2

2















 (3.15) 

and the  

0
t

1
2

2

2










  (3.16) 

equations must be met, where   and   are given by (3.12). The vector and scalar displace-

ment potentials satisfy the (3.15), (3.16) wave equations. These equations as well as the equa-

tions (3.10) and (3.11) written for the displacements show that two types of body waves can 

arise in the linearly elastic homogeneous isotropic medium. Based on  





rkti

0 e  the 

monochromatic plane wave solution of eq. (3.10) can be written as 

   rekti0

tt
tess
 




, (3.17) 

where 




tk . (3.18) 

The ts


 vector space satisfies the (3.7) auxiliary condition, therefore the  

0esiksdiv ttt 


 

equation should fulfilled as well, whereof est


 . The (3.17) describes a transverse wave 

propagating with   velocity. Since ,0sdiv t 


  these waves do not result in volume 

changes. 

The monochromatic plane wave solution of (3.11) has the form of 

   rekti0

ll
less
 




, (3.19) 

where  
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


lk . (3.20) 

The 
ls


vector space satisfies the (3.8) auxiliary condition, thus 

0seiksrot lll 


. 

This criteria is fulfilled if the directions of displacement and the propagation are parallel. The 

(3.19) describes a longitudinal wave propagating with   velocity. It can be seen from eq. 

(3.12) that the latter one in the two types of waves propagating in the Hooke medium is faster 

 2 . 

In comparison of the longitudinal and transverse waves originating from a common source 

the longitudinal waves arrive first to the observation point. 

 

3.3. Low amplitude waves in viscous fluid 

After linearization and neglecting the mass forces the (2.3.18) Navier-Stokes equation can be 

written as 

  vdivgradv'pgrad
t

v
0




 



. (3.21) 

Let us stipulate the 0vrot 


 auxiliary condition and let us form the divergence of the equa-

tion! Then with the commutation of the parcial derivatives 

  vdiv2'pvdiv
t

0


 




. (3.22) 

Based on the linearized continuity equation 

t

'1
vdiv

0 









, 

from the linearized barotropic equation the 

'c'p
2

h   

equation can be deduced, with which 

t

'p

c

1
vdiv

2

h0







. 

Substituting this equation into (3.22) 
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0
t

'p

t

'p

c

1
'p

2

2

2

h










  , 

where 
2

h0 c

2







 . In search of the monochromatic plane wave solution of the equation in 

the form of 

 rekti*
ep'p





 , 

the following complex dispersion relation can be derived 

  0
c

i1k
2

h

2
2




 , 

from which 

222

h

2
2

1

i1

c
k








 . (3.23) 

The complex wave number can be written in the form of  

aibk  , 

where 

 22

22

h 12

11

c
b








  (3.24) 

 22

22

h 12

11

c
a








  

based on (3.23). (3.25) 

In case of water the viscosity is      .mkg10,sm1440c,mNs01.0
33

0h

2
   With 

these data  ,s10.3
10

 i.e.  for the frequency  Hz10.5f
8

  

1 . 

This inequality is satisfied in seismic, acoustic and ultrasonic frequencies as well, therefore 

we can apply series expansion in (3.24), (3.25):  

hc
b


  
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 
3

h0

2

h

2

c2

2

c2
a



 
 . 

With these 

   rebtirea*rekti*
eepep'p





 . 

The longitudinal wave propagates with sound velocity of 
hc

b



 in viscous fluid and it atten-

uates with an absorption coefficient of 
h

2

c2
a


 , the attenuation coefficient is proportional 

to the square of the frequency. The absorption coefficient is  ma /1104
4

  in water at a 

frequency of  Hzf
4

10 , i.e. the  penetration depth of the wave is  kmad  2.5/1  . The 

attenuation is weak: a<<b, or otherwise the wave length is much smaller than the penetration 

depth.  

The transverse wave solution can be obtained with the 0vdiv 


 auxiliary condition 

based on the equations (3.21) and (3.23)  

v
t

v
0




 



, 

which solution is searched in the form of 

 rekti*
evv

 


 , 

and the 



i
k

2
  

dispersive equation can be deduced. For the complex wave number the following equation 

can be written  

 i1
2

k 



, 

so the real wave number is 




2
b  , the absorption coefficient is .

2
a




  The phase 

velocity of the wave 


 2

b
v f   is frequency dependent, the wave is dispersive. So 
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transverse waves can be created in viscous fluid. But these attenuate very strong (a=b). The 

penetration depth is 



2

a

1
d  . 

For example for a wave with a frequency of  Hz10f
4

 it is [m] , 10.71d
-5

  which is 

8
10  times smaller than for a longitudinal wave with the same frequency. Therefore it can 

be considered in seismic applications that the transverse waves play no role in water. 

 

3.4. Low amplitude waves in Kelvin-Voigt medium 

The motion equation of the Kelvin-Voigt body can be written in the form of 

    vdivgradvsdivgrads
t

s
2

2 


 



 

based on (2.3.35) after neglecting the mass forces. In search of the wave solution with the 

0 = v div 0, = s div


 auxiliary condition (transverse wave), then the 

vs
t

s
2

2 


 



 (3.26) 

equation can be derived, which monochromatic plane wave solution has the form of 

 rekti*

tt
tess
 


 . 

After substituting it into (3.26) a dispersion relation similar to (3.23) can be obtained  

222

2
2

t
1

i1
k












 , 

where 








  ,

2 . Solving the equation for the complex wave number  

aibk t   

formulas similar to the equations (3.24), (3.25) can be deduced 

 22

22

12

11
b












  (3.27) 
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 22

22

12

11
a












 . (3.28) 

The wave’s phase velocity 
b

v f


  is frequency dependent, so the transverse waves propagat-

ing in the Kelvin-Voigt medium show dispersion and their absorption coefficients is fre-

quency dependent as well. In a low frequency border-line case 1 . Then with series 

expansion the equations (3.27), (3.28) can be rewritten as 




















22

4

1
1b  





2
a

2

 . 

Thus in the first approximation the  





b

v f  

phase velocity is frequency dependent, i.e. there is no dispersion, the absorption coefficient 

depends on the square of the frequency. The Kelvin-Voigt medium changes to Hooke body 

in low frequencies in point of view of wave propagation velocity, but it preserves the proper-

ties of the Newton body with respect to the absorption.  

At high frequency .1  In this case the equations (3.27), (3.28) lead to the results 

reviewed at the Newton body  

ba,
2

b 



. 

The Kelvin-Voigt body gives back the Newton body in the high frequency border-line case. 

This can be expected from the structure of the model shown in Figure 2.1. The Kelvin-Voigt 

body is not suitable to describe weakly attenuating waves at high frequencies. 

Longitudinal wave can be discussed by specifying the 0 = v rot 0, = s rot


 auxiliary con-

ditions. As in this case the 

0s-sdivgrad = s rot rot 


  

equation is satisfied, from the motion equation 
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    v2s2
t

s
2

2 


 



. 

Writing the time dependence in the form of 
ti

e


 the following equation can be formulated 

   si12
t

s
02

2 


 



, (3.29) 

where 





2

2
0




 . 

Based on the equation the 

   0

*

0

*
i1,i1    

formulas can be introduced for the complex Lamé constants. With these the (3.29) can be 

rewritten as  

  s2
t

s **

2

2 


 



. 

In search of the wave solution in the form of monochromatic plane wave  

 rekti* less
 


  

based on (3.29) the following complex dispersive equation can be derived 

2

0

2

0

2

2
2

l
1

i1
k












 . 

For the aibk l   wave number results similar to (3.27) and (3.28) can be obtained 

 2

0

2

2

0

2

12

11
b












 ,      2

0

2

2

0

2

12

11
a












 ,  

from which the frequency dependent phase velocity  

 
2

0

2

2

0

2

f

11

12

b
v











  

and the frequency dependent penetration depth 

 
2

0

2

2

0

2

11

12
d












  
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can be deduced. These formulas have the form of 









2
a,b 0

2

   

0

2f

2
d,v




    

in the 10   low frequency border-line case, i.e. the phase velocity has the value char-

acteristic for the Hooke body, the absorption coefficient picks the value characteristic for the 

Newton body. The attenuation is weak, as 10   is fulfilled trivially from the a<<b con-

dition. The displacement function is 

 rebtirea

0 eess
 


 . (3.30) 

It should be understandable that the Kelvin-Voigt model is not appropriate for the description 

of weakly attenuating longitudinal waves in high frequency border-line case, because in that 

case 

 
ba,

22
b 







. 

Note that the Kelvin-Voigt body can be applied with different   parameters for the same 

rocks during description of rock mechanical and seismic phenomena. The characteristic time 

of creeping process in a rock has an order of magnitude of hours-days, a similar order of 

magnitude of   retardation time belongs to this. However for description of weak attenuation 

of seismic waves the )(sec)1010(
53 

  value is suitable. This fact suggests that the Kel-

vin-Voigt model has an approximate validity, the   parameter included in it is frequency 

dependent and it can be considered constant only in a narrow frequency range. However we 

can conclude that this model is suitable for description of weak attenuation of longitudinal 

and transverse waves. This is the reason that is widely used in seismics mostly for the descrip-

tion of wave propagation in rocks with high water and hydrocarbon content. 

 

The constant Q model 

The seismic experiences show that for most rocks the phase velocity is constant regardless to 

the frequency, but the absorption coefficient increases in direct proportion with the frequency 
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cv f   (3.31) 

Qc2
a


 , (3.32) 

where Q  is the frequency independent (constant) quality factor of rocks. This rock model is 

called the constant Q model.  

In case of Hooke body (3.31) is satisfied, but there is no absorption. For the Kelvin-

Voigt body (3.31) is satisfied at low frequency border-line case, the absorption coefficient can 

be determined by  





2
a

2

 , 

i.e. compared to (3.32) 


1
Q  , i.e. the quality factor is not constant. Similar results are 

obtained (at low frequency) for the Poynting-Thomson body. The Maxwell model can de-

scribe seismic waves in high frequency border-line case, but then  

2

1
a  , 

i.e. based on (3.32) 
2

Q


 , the quality factor is proportional to the frequency. Similar re-

sults are obtained in high frequency border-line case by the Poynting-Thomson body.  

It is understandable that the body following the constant Q model can be characterized 

by the complex Lamé constants 

   'i1,i1
**    (3.33) 

if its material equation is assumed in the form similar to the Hooke body’s formula (   and 

' are frequency independent) 

ik

*

ik

*

ik 2   . 

The here presented dissipative rock physical parameters can be defined by the formulas 

)'(tg',)(tg   , 
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where  is the loss angle (the angle between the stress and the deformation in case of  “pure” 

shear(for example at transverse waves)). 
' has similar interpretation in wave theory appli-

cations for the longitudinal waves. 

Based on the stress tensor above the motion equation can be written as 

  .sdivgrads
t

s ***

2

2 


 



 (3.34) 

For transverse waves 0sdiv 


 and so from the motion equation the 

s
t

s *

2

2 


 



 

equation can be derived. For the monochromatic waves written in the form of  

 rekti* tess
 




 

using equation (3.33) the following dispersion equation can be deduced 





i1

1
k

2

2
2


 , 

where 



 

2 . For the aibk   complex wave number the  






 




2

2
11

)1(2

1
b 




 (3.35) 






 




2

2
11

)1(2

1
a 




 (3.36) 

equations can be written. It is easily understandable that we can speak about weak attenuation 

(a<<b) only if 1 . Then with a simple series expansion from (3.35), (3.36) the following 

expressions can be derived 




b  





2
a  , 

from which it can be seen after comparing to 3.32 that for transverse waves that the quality 

factor is really independent from the frequency 
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

1
Q  , 

similar to the phase velocity 



b

v f
. 

Stipulating the 0srot 


 auxiliary condition for longitudinal waves the  

  s2
t

s **

2

2 


 



 

equation can be deduced based on (3.34). In search for its monochromatic plane wave solution 

in the form of 

 rekti* less
 




 

the following dispersion equation can be obtained  





i1

1
k

2

2
2


 , 

where 





2

2'




 . 

This equation changes into (3.35) with the substitution of   , , therefore its 

solution can be written directly according to (3.35) and (3.36) 






 




2

2
11

)1(2

1
b 




 (3.37) 






 




2

2
11

)1(2

1
a 




. (3.38) 

Weak attenuation happens only if 1
2
  (i.e. 1',1   ), therefore based on (3.37), 

(3.38) 




b , 





2
a  . 

Based on the comparison to (3.32) the quality factor for longitudinal waves can be obtained 

in the form 





 2'

21
Q




 . 

The constant Q model gained widespread application in the field of seismics and acoustics. 
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4. Elastic wave propagation 

The pressure dependence of elastic properties of acoustic waves is an extensively explored 

rock physical problem because pressure strongly influences the mechanical and transport 

properties of rocks, such as acoustic velocity, porosity, permeability and resistivity. By using 

the discussed elastic medium models in the previous sections petrophysical models can be 

developed which describe the pressure dependence of elastic properties of rocks (primarly the 

velocity-pressure and quality factor-pressure relationships). By the knowledge of the charac-

teristics of elastic waves - if this dependence can be reversed - stress state of rocks can be 

determined indirectly based on seisimic/acoustic measurements in laboratory. To relate 

changes in seismic attributes to reservoir conditions, a thorough understanding of pressure 

effects on rock properties is essential.  

 

4.1. Describing the presuure dependence of longitudinal wave velocity 

The velocity of acoustic waves propagating in different rocks under various confining pres-

sure conditions (Wyllie et al. 1958, Stacey 1976, Prasad and Manghnani 1997, King 2009) 

and also under different pore pressures (Nur and Simmons 1969, Yu et al. 1993, Darot and 

Reuschlé 2000, He and Schmitt 2006) were investigated for several decades by many re-

searchers. According to general observations, larger propagation velocities are measured on 

water-saturated samples than on dry or gas-saturated ones (Toksöz et al. 1976) and the P wave 

velocity is larger in coarse grained, sedimentary rocks than that of in fine grained samples 

(Prasad and Meissner 1992). The phenomenon that the wave velocity increases with pressure 

is well-known and has been explained on various rock mechanical studies (Wyllie et al. 1956, 

Birch 1960). One of the most frequently used mechanisms for explaining the phenomenon is 

based on the closure of microcracks in rocks under the change of pressure (Holt et al. 1997; 

Best 1997; Hassan and Vega 2009; Sengun et al. 2011). Singh et al. (2006) created an empir-

ical model for the pressure dependent wave velocity after observing measured P and S wave 

velocities on several sandstone samples. Prasad (2002) studied the same relationship for gas-

saturated and pressurized zones from the ratio of propagation velocities of P and S waves. 

According to petrophysical models and experimental results, we can infer to the size of 

emerging tensions in rocks, and even probably to its dependence of direction using measured 

longitudinal and transversal wave velocity data. Several petrophysical models can be found 

in the literature, e.g., Biot model (Biot 1956a, Biot 1956b), Gassmann model (Gassmann 

1951), Contact radius model (Duffy and Mindlin 1957), Friction model (Winkler and Nur 
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1982, Stewart et al. 1983), etc. These models provide proper approach for the description of 

the phenomena depending on the type of rock. The Biot model for example describes wave 

propagation in a two phase system, a porous elastic frame and a viscous, incompressible pore 

fluid. The propagation and attenuation of the wave is ascribed to relative motion between the 

frame and its pore fluid. 

In the lecture notes we present a new approach for the quantitative description of the 

pressure dependence of phase velocity of acoustic waves. Our considerations are based on the 

mechanism that microcracks are closing with increasing pressure. 

 

4.1.1. The pressure dependent acoustic velocity model 

Modeling plays an important role in the cognition of natural science. In the explanation of a 

phenomena we consider the most important and most essential properties and neglect all the 

other (in other aspects may be important) characteristics. Hence, we set up a model in which 

we simplify the studied structure and henceforth we talk about the properties of the model. 

This approach was followed at the development of the pressure dependent velocity model. 

The response of rock to stress depends on its microstructure and constituent minerals, 

which is manifested in pressure dependence of velocity of elastic waves. Several qualitative 

ideas exist describing the pressure dependence of seismic velocity. Such as that pore volume 

reduces with increasing pressure, thus increasing velocity can be measured (Birch 1960). Fol-

lowing Brace and Walsh (1964) we assume that the main factor determining the stress de-

pendence of the wave propagation velocity is the closure of the microcracks. For this reason, 

we introduce parameter N as the number of open microcracks. Accepting this qualitative idea 

a rock physical model – which is valid only in the reversible (elastic) range - was developed 

using the following formulation. (In our considerations we focus on uniaxial stress state and 

longitudinal acoustic waves.) 

If we create a stress increase dσ in the rock, we find that dN (the change of the number 

of open microcracks) is directly proportional to the applied stress increase dσ. At the same 

time dN is directly proportional to N. We can unify both assumptions in the following differ-

ential equation as 

NddN  ,  (1) 

where λ is a new material dependent petrophysical constant. In Eq. (1) the negative sign rep-

resents that at increasing stress - with closing microcracks - the number of the open mi-

crocracks decreases. The solution of Eq. (1) is 

http://szotar.sztaki.hu/dict_search.php?M=1&O=HUN&E=1&C=1&A=0&S=H&T=1&D=0&G=0&P=0&F=0&MR=100&orig_lang=ENG%3AHUN%3AEngHunDict&orig_mode=1&orig_word=megismer&flash=&sid=6296e5c24deb48da959e38ea0c473c44&vk=&L=ENG%3AHUN%3AEngHunDict&W=cognition
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)exp(NN 0  ,  (2) 

where N0 is the number of the open microcracks at stress-free state (σ = 0). Another assump-

tion is a linear relationship between the propagation velocity change dν - due to pressure in-

crement dσ - and dN 

dNdv  , (3) 

where α is another proportionality factor (material quality dependent constant). The negative 

sign represents that the velocity is increasing with decreasing number of cracks. Combining 

Eq. (3) with Eq. (1) and Eq. (2) we obtain 

 d)exp(Ndv 0  . (4) 

Solving the upper differential equation we have 

)exp(NKv 0   . (5) 

where K is an integration constant. At stress-free state (σ = 0) the propagation velocity ν0 can 

be measured and computed from Eq. (5) as ν0=K-αN0. Hence, we obtain the integration con-

stant: K=ν0+αN0. With this result and the introduction of Δv = αN0, Eq. (5) can be rewritten 

in the following form 

))exp(1(vvv 0   . (6) 

Eq. (6) provides a theoretical connection between the propagation velocity and rock pressure. 

The model equation shows that the propagation velocity - as a function of stress - starts from 

v0 and increases up to the vmax=v0+Δv value according to the function of 1-exp(-λσ). Thus, the 

value Δv = vmax -v0 specifies a velocity range in which the propagation velocity can vary from 

stress-free state up to the state characterized by high rock pressure.  

The velocity reaches its limit vmax at high stress values. Certainly it is only valid in the 

framework of the model assumptions (reversible range), because in the range of high stresses 

new microcracks can arise in the rock. (This phenomenon is outside of our present consider-

ations. In order not to exceed reversible range and to avoid creating new cracks, samples were 

loaded during our measurements only up to one third of the critical uniaxial strength.) 

Since λ is a new petrophysical parameter (material characteristic) it is necessary to give 

its physical meaning. Introducing the notation u = vmax -v, wherewith Eq. (6) can be written 

also in the form 

)exp(vu   .  (7) 
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It can be seen that at the characteristic stress σ* (when λσ*=1) the quantity vmax -v decreases 

from its Δv „initial” value to Δv/e. The λ petrophysical characteristic (material constant) is the 

reciprocal value of σ*. On the other hand, we can also give another meaning of parameter λ.  

The experiences show that rocks show different velocity response to the same change in 

the rock pressure or in other words the velocity shows different sensitivity to pressure. It is 

interesting to see, what amount of (relative) velocity change can be measured as a conse-

quence of a certain (for example unit) change in the stress. For similar purpose the sensitivity 

functions are extensively used in the seismic (Dobróka 1987), the geoelectric (Gyulai 1989), 

electromagnetic (Szalai and Szarka 2008) and well-logging (Dobróka and Szabó 2011) liter-

ature. So, we introduce the (logarithmic) stress sensitivity of the u = vmax -v velocity as 




d

)uln(d

d

du

u

1
)(S  .  (8) 

Using Eq. (7) it can be seen that 

S
d

)uln(d



 , (9) 

which shows that the λ petrophysical characteristic is the logarithmic stress sensitivity of the 

u = vmax -v velocity. It can be seen that in our petrophysical model the logarithmic stress 

sensitivity is independent of the stress. 

 

4.1.2. Experimental setting, technique and samples 

The pulse transmission technique (Toksöz et al. 1979) was used for P wave velocity meas-

urements. The experimental set-up (Fig. 1) was compiled at the Department of Geophysics 

(University of Miskolc). Rock samples subjected to uniaxial stress were analyzed with an 

electromechanical pressing device and wave velocities - as a function of pressure - were meas-

ured at adjoining pressures. 

An important question is that how reproducible the measurements are. Hence we made 

time-lapse measurements in case of several samples. One typical test result is presented in 

Fig. 2. 

It was shown that the second measurement provided the same result with very good 

approximation. Thus the phenomenon is highly reproducible and the elastic range was not 

exceeded (new microcracks were not formed under pressure). 

The specimens used in our studies originated from oil-drilling wells. We performed 

wave velocity measurements on several different air-dried sandstone samples. Three typical 
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test results (sample S1, S2 and S3) are presented in this lecture notes. Table 1 contains the 

description and depths of our studied samples.   

 

 

Figure 1.: Measurement layout for wave velocity measurements 

 

 

Table 1.: Characteristics of our experimental samples 

 Sample Description Depth [m] 

S1 Fine-, medium-grained sandstone 2800 

S2 Fine-grained sandstone 3500 

S3 Tuffy sandstone 2800 
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Figure 2.: Result of repeated measurements for studying reproducibility 

 

4.1.3. Case studies 

The parameters appearing in the model equation (Eq. (6)) can be determined by processing 

measurement data based on the method of geophysical inversion (Dobróka et al. 1991, Do-

bróka and Szabó 2005). In order to prove the validity and practical applicability of the velocity 

model introduced in Section 2, we present the results of the applied linearized inversion 

method for each sample (Table 2). The inverse problem is overdetermined, so the Least 

Squares method (Menke 1984) can be effectively used for solving it. 

 

Table 2.: Model parameters estimated by linearized inversion 

Sample ν0 [m/s] Δν [m/s] λ [1/MPa] 

S1 2571,1 827,8 0,1471 

S2 2561,6 753,5 0,2157 

S3 3280,9 476,6 0,2774 
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With the estimated parameters the velocities can be calculated at any pressure by substi-

tuting them into Eq. (6). The results are shown in Figs. 3-5. The continuous line shows the 

calculated velocity-pressure function while asterisk symbols represent the measured data. 

 

 

Figure 3.: Longitudinal wave velocity-pressure function on sample S1 (continuous line – 

calculated data produced by inversion, asterisks – measured data) 

 

Figs. 3-5 show that the calculated curves are in good accordance with the measured data 

which proves that the petrophysical model suggested in Eq. (6) applies well in practice. It can 

be seen that in the lower pressure regime, the increase in velocity with increasing pressure is 

very steep and nonlinear. This is due to the closure of microcracks, which dramatically affects 

the elastic properties of rock and thereby the velocities. In the higher pressure regime, the 

increase in velocity (with increasing pressure) is moderate as fewer numbers of cracks closed. 

The model was also applied on several sandstone samples (fine-, medium-, coarse-grained, 

pebbly, tuffy etc.) during the research and similar results were obtained. 
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Figure 4.: Longitudinal wave velocity-pressure function on sample S2 (continuous line – 

calculated data produced by inversion, asterisks – measured data) 

 

 

Figure 5.: Longitudinal wave velocity-pressure function on sample S3 (continuous line – 

calculated data produced by inversion, asterisks – measured data) 

 

As it was mentioned the samples were loaded during our measurements only up to one 

third of the critical uniaxial strength. It was found that λ is connected with uniaxial strength: 
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the higher the uniaxial strength of a sample, the smaller the estimated λ is. It was also observed 

that the parameter ν0 is sensitive to rock quality, as it can be seen in Fig. 6. Since sample S1 

was a fine-, medium-grained and S2 was fine-grained sandstone, the curves belong to these 

samples are almost the same. But the curve of the tuffy sandstone sample (S3) is located in 

different velocity range, because it starts from a different initial velocity (ν0). Finding connec-

tion between the other parameters and rock quality requires further investigations. 

 

 

Figure 6.: Longitudinal wave velocities as a function of pressure for the studied samples 

(curves – calculated data produced by inversion, symbols – measured data) 

 

For the characterization of the accuracy of estimations, we calculated the measure of 

fitting according to the data misfit (D[%]) formula 

[%]100
d

dd

N

1
D

N

1k

2

)c(

k

)c(

k

)m(

k 











 
 



,  (10) 

where dk
(m) is the measured velocity at the k-th pressure and dk

(c) is the k-th calculated velocity 

data, which can be computed according to Eq. (6). Table 3 contains the value of data misfits 

for each sample in the last iteration step. 
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Table 3.: Values of the calculated measure of fitting in data space 

Sample D [%] 

S1 0,30 

S2 0,29 

S3 0,34 
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4.2. Describing the pressure dependence of quality factor 

In recent years, the attenuation of seismic waves has found increased interest as an important 

parameter for rock characterization. Attenuation as a function of depth has fundamental inter-

est in groundwater, engineering, and environmental studies as well as in oil exploration and 

earthquake seismology. As is well-known, compared to the phase velocity, the absorption 

coefficient is much more sensitive for the pressure change. So the discussion of the pressure 

dependence of the absorption coefficient or that of the seismic Q can be interesting also in the 

exploration of near surface structures.  

Theories of seismic wave attenuation in rocks (Mavko et al. 1979; Bourbié et al. 1987) 

usually include the nonlinear friction model, the Biot model, viscoelastic models and elastic 

scattering. According to the frictional model the attenuation is caused by the anelasticity of 

the rock matrix and frictional dissipation due to relative motions at grain boundaries (White 
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1966) and across crack surfaces (Walsh 1966). The Biot model (Biot 1956a,b) explains the 

dissipation in a fully saturated rock by the relative motion between the solid components and 

pore-fluid. The viscoelastic model (Bland 1960) contains numerous physical mechanisms, 

viz. "squirt" or "squish" flow, mechanical defects of rocks (such as anelasticity of cracks), 

grain-scale local flow, and viscous relaxation. Attenuation predicted by the elastic scattering 

mechanism is a geometric effect caused by scattering off small pores (Kuster and Toksöz 

1974) or selective reflection of thin beds (O'Doherty and Anstey 1971). 

The propagation characteristics of seismic wave carry information of important mechan-

ical properties of rocks, therefore the determination of attenuation and velocity of acoustic 

wave is a frequent task in laboratory. Laboratory measurements of attenuation have been made 

at seismic frequencies (Spencer 1981; Dunn 1987; Paffenholz and Burkhardt 1989), sonic 

frequencies (Murphy 1982; Lucet et al. 1991) and more commonly at ultrasonic frequencies 

(Toksöz et al. 1979; Winkler 1985; Khazanehdari and McCann 2005; Han et al. 2011). Meas-

urements done under different pressure conditions are useful for understanding the mecha-

nisms of attenuation. The pressure dependence of velocity and attenuation of P and S waves 

were measured on dry, water-, brine-, methane-saturated as well as frozen samples by Toksöz 

et al. (1979). It was found that the attenuation was higher in case of fresh water- and brine-

saturated samples than in methane-saturated or dry samples. Some significant characteristics 

of the attenuation behaviour of sedimentary rocks were also shown in the example of Berea 

sandstone by Toksöz et al. (1979). The experimental results showed that attenuation decreased 

with increasing pressure for P waves. This dependence is nonlinear and distinct changes are 

present at low pressures. In the higher pressure range, the change of grain contacts and poros-

ity is smaller. As the reason of this phenomenon the closure of microcracks under varying 

pressure was noted by various authors (Johnston et al. 1979, Yu et al. 1993, Best 1997). Bas-

tiaens (2005) studied the EDZ (Excavation Disturbed or Damaged Zone) around the gallery 

by observing macro-fractures and pore pressure distribution. It was shown that the orientation 

of all fractures indicating a consistent fracture pattern along the gallery and industrial exca-

vation techniques can limit the EDZ. Prasad and Meissner (1992) have studied the influence 

of grain size, grain shape, and differential pressure on compressional and shear wave velocity 

and attenuation at frequencies of 100 kHz. Their measurements show that coarser grains make 

the velocity and attenuation of compressional waves increase and angularity of grains causes 

a decrease in velocity and attenuation. 

To evaluate laboratory measurements reliably, a quantitative model of the mechanism 

of pressure dependence of the dispersion characteristics is required. In this lecture notes a 
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petrophysical model is introduced which explains the mechanism of pressure dependence of 

attenuation of seismic waves. The petrophysical model is tested on laboratory measurement 

data published earlier by Toksöz et al. (1979), Lucet and Zinszner (1992), Yu et al. (1993), 

Meglis et al. (1996) as well as Prasad and Manghnani (1997). 

 

4.2.1. The pressure dependent seismic q model 

Modelling plays an important role in the cognition of natural science. The phenomena of the 

material world usually cannot be described in their entirety because of their complexity. 

Toksöz and Johnston (1981) distinguish two lines of the mathematical and physical descrip-

tions for attenuation mechanism. The first type of theories and models uses physical and math-

ematical descriptions of possible attenuation mechanisms. These mechanisms are related to 

the microscopic properties of the rock and their behaviour during elastic wave propagation. 

The second method is to explain the nature of attenuation in terms of generalized equation of 

linear elasticity (Hooke’s law) or by modified equations allowing certain nonlinearity. These 

phenomenological models consider the most important and essential properties neglecting all 

the other (in other aspects may be important) characteristics. Rocks are in general heteroge-

neous and often replaced by an effective or equivalent homogeneous material within a repre-

sentative elemental volume if the dimensions of the constituents (e.g. grains, pores, cracks) 

are small compared with the shortest seismic wavelength. Based on the latter, we set up a 

model in which we simplify the studied structure and henceforth we talk about the properties 

of the model. A material with small-scale variations in properties (permeated with cracks) acts 

mechanically as homogeneous medium if the excitation wavelengths are large compared with 

the scale of the variations in the structure. At the development of our rock physical model we 

assumed the macroscopic homogeneity of rocks. 

The attenuation in a rock medium is defined by the well-known formula given by 

Knopoff (1965) 

vQ

f
a


 , (1) 

where a is the absorption coefficient, f is the frequency, Q is the quality factor and v is the 

propagation velocity of acoustic wave. The most common measure of seismic-wave attenua-

tion is the dimensionless quality factor Q or its inverse Q−1 (dissipation factor). The quality 

factor as an intrinsic rock property represents the ratio of stored to dissipated energy. It is a 

general observation that the presence of microcracks, fractures and other defects in the solid 
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rock material results in significant pressure dependence of attenuation (i.e. it decreases with 

increasing pressure), and velocity (i.e. it increases with increasing pressure) as a result of 

fracture closing and improved contacts (Klíma et al.1964, Gordon and Davis 1968, Johnston 

et al 1979). Walsh (1966) approximated the cracks within the rocks by ellipsoids in plane 

strain with a small aspect ratio. Based on the frictional model the pressure-attenuation rela-

tionship can be characterized by the exponential decrease of attenuation with increasing pres-

sure (Schön 1996). The character of the exponential function depends on the aspect ratio and 

the effective static frame bulk modulus. The attenuation coefficient vs. pressure dependence 

of sands at low pressure can also be described by a simple power law (Schön 1996) a=a0(p/p0)-

n, where p is the pressure, p0 the reference pressure (e.g., 1 kPa), a0 the attenuation coefficient 

at this pressure, and n an exponent. It must be noted that in this case the phenomenon of 

pressure dependence can be explained based on the change of pore volume under pressure 

instead of microcracks. The data from Hunter et al. (1961) lead to a value of n = 1/6. Hamilton 

(1976) gives values between 1/6 and 1/2 for sediments saturated with water.  

To reasonably interpret laboratory measurements, a quantitative model - which provides 

the physical explanation - of the mechanism of pressure dependence is required, which in-

cludes as few parameters as possible. Several qualitative ideas exist to explain pressure de-

pendence. One such idea is that with increasing pressure the pore volume reduces, thus in-

creasing quality factor and velocity can be measured (Birch 1960). Brace and Walsh (1964) 

explained the phenomenon of pressure dependence by the closure of microcracks. Accepting 

this qualitative idea we can create a simple petrophysical model based on the following for-

mulation. We studied the effect of microcracks on the quality factor by means of quantitative 

considerations without so much as the detailed analysis of the structural mechanisms. In our 

considerations we restrict the problem to uniaxial stress state and longitudinal acoustic waves 

and it is also assumed, that the Q-factor is independent of the frequency (the so-called constant 

Q-model - which connected to the frictional attenuation - is used with allowing the changes 

due to the stress variations).  

If we create stress increase (dσ), in the rock, we assume that dN (the change of the num-

ber of open microcracks) is directly proportional to the stress increment, dσ. At the same time, 

dN is directly proportional to N, which is the total number of open microcracks (per unit vol-

ume). We can unify both assumptions in the following differential equation as 

 dNdN  , (2) 
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where λ is a proportionality factor (constant depends on material quality). In Eq.(2) the nega-

tive sign represents that at increasing stress - with closing microcracks - the number of the 

open microcracks decreases. The solution of the upper equation is well-known 

)exp(NN 0  , (3) 

where N0 is the number of the open microcracks at stress-free state (σ = 0). It can be seen that 

at the characteristic stress σ* (when λσ*=1) the quantity N - which is the crack density after 

Meglis et al. (1996) in unit volume - decreases from its „initial” value N0 to N0/e. Hence the 

petrophysical parameter λ is the reciprocal value of the characteristic stress σ*, which provides 

the physical meaning of parameter λ. The only problem with this interpretation of λ is that the 

crack density in Eq.(3) is not directly measurable. Thus, it is required to be connected to 

measurable quantities, e.g. seismic Q. On the other hand it is obvious that the increase in dN 

leads to a decrease in the change of quality factor (dQ), , hence we assume a linear relationship 

between these infinitesimal changes  

dNdQ  , (4) 

where  is another proportionality factor (material quality dependent constant). The negative 

sign represents that the quality factor is increasing with decreasing number of open mi-

crocracks. Combining the previous assumptions we obtain 

 d)exp(NdQ 0  . (5) 

After integrating Eq.(5) we have 

)exp(NKQ 0   . (6) 

At stress-free state (σ=0) the quality factor can be measured in the rock sample. Its value is 

denoted by Q0 and can be computed from Eq.(6) as 00 NKQ  . Thus we obtain the inte-

gration constant: 00 NQK  . With this result and the introduction of ΔQ0 =αN0, Eq.(6) 

can be rewritten in the following form  

))exp(1(QQQ 00   .  (7) 

It is well-known that there can be several reasons to absorption. Using Eq. (7) - which provides 

a theoretical connection between the quality factor and rock pressure - we describe the atten-

uation caused by only the change in the number of microcracks under varying pressure. The 

quality factor as a function of stress starts from Q0 and increases up to the value Qmax=Q0+ΔQ0 

according to the function 1-exp(-λσ). The value ΔQ0 = Qmax−Q0 is the range in which the 
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quality factor can increase from stress-free state up to the state characterized by high rock 

pressure. From the notation ΔQ0 =αN0 it follows that in case of samples originated from the 

same rock type (same geological unit), when α can be considered (nearly) as constant, ΔQ0 is 

proportional to the number of open microcracks (per unit volume) N0. Namely if ΔQ0 is small 

in a rock sample, the related number of open microcracks is low. 

The quality factor reaches its upper limit Qmax at high stress values. Certainly it is only 

valid in the framework of the model assumptions, because in the range of (very) high stresses 

new microcracks can arise in the rock. Therefore the developed model is valid only in the so-

called reversible range. (Description of non-reversible range is outside of our present consid-

erations.)  

Since λ is a new petrophysical parameter (material characteristic) it is necessary to give 

its physical meaning. As it was mentioned before, the petrophysical characteristic λ (material 

constant) is the reciprocal value of the characteristic stress σ*. However another meaning of 

parameter λ can be given. Introducing the quantity ΔQ=Qmax-Q (the available range in which 

the quality factor can increase from a certain pressure up to the state characterized by high 

rock pressure), wherewith Eq. (7) can be written also in the form 

)exp(QQ 0   .  (8) 

Laboratory experiments show that rocks have different quality factor response to the same 

change in the rock pressure or in other words the quality factor exhibits different sensitivity 

to pressure change. For similar purpose the sensitivity functions are extensively used in the 

seismic, well-logging, electromagnetic and geoelectric literature (Gyulai 1989). So, we intro-

duce the (logarithmic) stress sensitivity of the quality factor change ΔQ= Qmax -Q as 












d

)Qln(d

d

)Q(d

Q

1
)(S  . (9) 

Using Eq. (8) it can be seen that 

S
d

)Qln(d





 , (10) 

which shows that the petrophysical characteristic λ is the logarithmic stress sensitivity of the 

quality factor, ΔQ= Qmax -Q. It can be seen that in our petrophysical model the logarithmic 

stress sensitivity is independent of stress. It is noted that after the determination of λ it can be 

considered as the reciprocal value of the characteristic stress σ* at which the crack density 

decreases from its „initial” value N0 to N0/e. 
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4.2.2. The pressure dependent propagation velocity 

The velocity of elastic waves in rocks are influenced primarily by the elastic properties of the 

rock forming minerals, relative volumes of minerals, consolidation and cementation of the 

rock matrix, porosity, pore shape and content, pressure and temperature. It is well-known that 

the velocity of acoustic wave propagating in rocks is nonlinearly connected with the effective 

pressure (Yu et al. 1993, Best 1997). For an analytical description of the nonlinear velocity 

vs. pressure relationship, exponential functions are most commonly used (Wepfer and Chris-

tensen 1991; Wang et al. 2005; Singh et al. 2006). Several empirical models exist to describe 

the pressure dependence of longitudinal acoustic wave velocity, but these models usually pro-

vide the determination of the parameters of a suitably chosen formula based on mathematical 

regression method remaining the physical meaning unexplained (Wepfer and Christensen 

1991, Ji et al. 2007). A phenomenological theory for fractured rocks after Schön (1996) de-

scribes the effect of all defects (fractures, defects at grain boundaries, intragranular defects, 

etc.) by one parameter. Wang et al. (1971) showed the application of this simple model de-

scribing the velocity vs. depth function on terrestrial and lunar rock specimens. 

At the development of our velocity model - similarly to the quality factor model - we 

assume linear relationship between the propagation velocity change dν and the number of 

closing microcracks dN (due to pressure increment dσ)  

dNdv  . (11) 

where β is the proportionality factor (another material quality dependent constant introduced 

by Dobróka and Somogyi Molnár (2012). The negative sign represents that the velocity is 

increasing with decreasing number of cracks. Our theory is based on that the same change in 

the number of microcracks refers to the pressure dependence of quality factor and also that of 

velocity. (Meglis et al. (1996) experimentally proved that the crack density parameter derived 

from measurement of pressure dependence of quality factor and velocity is the same for both 

quantities.) Combining this assumption with Eq.(2) and Eq.(3) we obtain 

 d)exp(Ndv 0  . (12) 

After solving Eq.(12) we have 

))exp(1(Nvv 00   . (13) 

Denoting Δv0 =βN0 we obtain the following formula 

))exp(1(vvv 00   , (14) 



Elastic wave propagation 

75 

where ν0  is the velocity at which the elastic wave propagates in the stress-free rock and λ is a 

common parameter in the two models. Eq.(14) describes a theoretical connection between the 

propagation velocity and rock pressure (Dobróka and Somogyi Molnár 2012). Similarly to 

the quality factor, the velocity as a function of stress starts from ν0 and according to the func-

tion 1-exp(-λσ) increases up to the value νmax=ν0+Δν0. Consequently, the value Δν0 = νmax−ν0 

is a velocity range in which the propagation velocity varies from stress-free state up to the 

state characterized by high rock pressure (νmax). 

 

4.2.3. Experimental samples 

The quality factor model was tested on measurement data published in literature. Data sets 

measured on Berea sandstone (Toksöz et al. 1979), Rotbach sandstone (Lucet and Zinszner 

1992), coal samples (Yu et al. 1993) and Hebron gneiss (Meglis et al. 1996) were processed. 

The spectral ratio technique (Toksöz et al. 1979) was used to determine quality factor and 

measurements were carried out beside varying pressure. 

The Berea medium-grained sandstone sample (Toksöz et al. 1979) was composed of 

angular grains which showed microcracks and the grain contacts were somewhat jagged and 

were weakly cemented. It had a porosity of 16 percent, permeability of 75 mD, and an average 

bulk density of 2.61 g/cm3. X-Ray scanner images for Rotbach sandstone showed that the 

rock density appeared rather uniform without major heterogeneities. The samples used by Yu 

et al. (1993) were Upper Permian black coal samples which were originated from the Bulli 

Seam near Wollongong and their physical appearance was dull, fairly homogeneous and mi-

crobanded in the central locality. The medium-grained quartz-plagioclase-biotite gneiss sam-

ple was originated from the Hebron formation. The sample had a subhorizontal metamorphic 

foliation which had influenced the orientation of microcracks. 

Both quality factor and longitudinal velocity - as a function of pressure - were measured 

at adjoining pressures on Berea sandstone sample by Prasad and Manghnani (1997). Similarly 

the spectral ratio technique was used for quality factor measurements and the pulse transmis-

sion technique (Toksöz et al. 1979) was applied for velocity measurements. The analyzed 

Berea sandstone sample was composed of angular grains (150–200 μm) which showed mi-

crocracks. The grain contacts were somewhat jagged and were weakly cemented. 
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4.2.4. Estimation of model parameters appearing in the model 

The petrophysical constants (Q0, ΔQ0, λ, ν0, Δν0) appearing in the model equations (Eq.(7) and 

Eq.(14)) can be determined by using inversion methods in processing the measurement data. 

In formulating the inverse problem, we introduce the column vector of model parameters as 

 T

00 ,Q,Q m , (15) 

where T denotes the transpose. The parameters appearing in Eq. (7) gives the possibility to 

calculate the quality factor at the k-th pressure (σk). Measured quality factor data are also 

represented in a column vector 

 T)obs(

P

)obs(

1
1

Q,,Q 
obs

d , (16) 

where P1 is the number of the measured quality factor data. If the size of vector d is larger 

than that of the vector m, the inverse problem is overdetermined. Observations are connected 

to the model nonlinearly as 

)( mgd
calc

 , (17) 

where g represents the model response function (given by Eq.(7)), which is used to calculate 

quality factor data at a pressure value and  

 T)calc(

P

)calc(

1
1

Q,,Q 
calc

d . (18) 

The function g represents a nonlinear vector-vector function in the general case. If we approx-

imate it with the first two members of its Taylor-series in any point not too far from the solu-

tion we can linearize the inverse problem. Then, the solution of the inverse problem can be 

found at the minimal distance between the measured and calculated data  

.),( min eeE , (19) 

where 

calcobs
  dde - . (20) 

The Gaussian Least Squares method can be effectively used for solving overdetermined in-

verse problems (Menke 1984). In the inversion procedure the actual model is gradually refined 

until the best fitting between measured and calculated data is achieved 

δmmm  0 , (21) 
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where m0 is the initial model and m is the model correction vector. The vector of model 

corrections can be computed as 

  ,
1

δd GGGδm
TT -

  (22) 

where G denotes the Jacobi's matrix, and d is the difference between the measured and ac-

tually computed data vector. Solving the upper equation the new parameter vector can be 

given as 

δmmm 
oldnew

. (23) 

The iterative procedure is repeated for 50 iteration step but from circa the 10th step the optimal 

parameters can be obtained for the actual inverse problem. 

The described method was applied to process quality factor data sets. Eq.(7) was applied 

as a forward modelling formula and since the number of measured data is larger than that of 

parameters to be determined, the Least Squares method was used. The inversion procedure 

was numerically stable and could be handled properly by the above detailed linear inversion 

technique. 

The velocity and quality factor data sets measured by Prasad and Manghnani (1997) was 

processed by using a joint inversion technique (Dobróka et al. 1991). In a joint inversion 

procedure we integrate all of the measurement data into one combined data vector and we 

give an estimate for the quality factor and velocity data in a single inversion algorithm, where 

λ is a common petrophysical parameter connecting the two data sets. Eq.(7) and Eq.(14) serve 

as forward modelling equations (model response functions) in handling the least squares-

based joint inversion problem. 

Results of the applied linearized inversion methods for each sample can be seen in Table 

1. The estimation errors of the model parameters were calculated using the method given by 

Menke (1984). In the inverse problem let us assume that the linear connection of data (d) and 

parameter space (m) can be described by the equation 

Adm  , (24) 

where A is the generalized inverse matrix of the current inversion method (in this case 

  TT
GGG

1-

). Since A does not depend on the measurement data, it can be deduced that 

T
)cov()(cov AdAm  , (25) 

which connects the covariance matrix of data space to that of the model space. 
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Table 1.: Model parameters with their estimation errors given by inversion procedure 

Sample 

Estimated petrophysical model parameters 

D (%) 

Q0 ΔQ0 

λ 

(1/MPa) 

Δν0 

(km/s) 

ν0 

(km/s) 

Berea, dry 

(Toksöz et al. 1979) 

21,22 

(±0,91) 

91,69 

(±0,94) 

0,0502 

(±0,0022) 
- - 2,11 

Rotbach 

(Lucet and Zinszner 1992) 

10,24 

(±1,49) 

50,13 

(±1,43) 

0,0625 

(±0,0097) 
- - 7,11 

Coal No. 15 

(Yu et al. 1993) 

24,65 

(±0,39) 

35,59 

(±0,40) 

0,1122 

(±0,0055) 
- - 1,84 

Coal No. 17 

(Yu et al. 1993) 

6,67 

(±0,51) 

43,65 

(±0,52) 

0,0549 

(±0,0027) 
- - 1,75 

Hebron 

(Meglis et al. 1996) 

7,21 

(±0,55) 

28,88 

(±0,59) 

0,0380 

(±0,0030) 
- - 4,43 

Berea, dry 

(Prasad and Manghnani 1997) 

16,17 

(±1,48) 

55,66 

(±1,84) 

0,0911 

(±0,0091) 

0,89 

(±0,05) 

3,75 

(±0,04) 
5,59 

 

For the covariance matrix in data space it is a general assumption that data are uncorrelated 

and the variance is the same for each data, thus  

Id
2

)d()cov(  , (26) 

where I is the identity matrix and  
2

d  is the variance of the data. However, in case of different 

data sets (namely the quality factor and velocity data) it takes the form 
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d  (27) 
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where 2

1  denotes the variance of quality factor data and 2

2  means that of velocity data, 

respectively. At the end of the inversion procedure uncertainty for the estimates can be calcu-

lated from the deviations of measured and predicted data. Hence the elements of the main 

diagonal of covariance matrix in parameter space provides the variances of model parameters, 

that means 

 iim
cov

i

m  (28) 

gives the estimation error of the i-th model parameter (i=1,...,5 in the given problem). The 

estimation errors of the model parameters of each sample can be seen in parentheses in Table 

1. 

From the normalization of the elements of the covariance matrix one can derive the cor-

relation matrix, which provides the strength of linear relationships between each pair of model 

parameters. The element of i-th row and j-th column of the correlation matrix is the correlation 

coefficient 

jjii

ij

ij

)(cov)(cov

)(cov
)(corr

mm

m
m  , (29) 

which characterizes the correlation of the related model parameters by a number in the interval 

[-1,1]. The correlation matrix can be characterized by a single scalar, which is the mean spread 

 
 


M

1i

M

1j

2

ijij δ)corr(
1)-M(M

1
S m , (30) 

where δ is a Kronecker-delta symbol (which equals 1 if i=j, otherwise it is 0). 

The correlation matrix in case of the joint inversion procedure (joint interpretation of 

quality factor and velocity data sets) can be seen in Table 2. For the identification of the pa-

rameter pairs see the order of elements of the combined model parameter vector (

 T

0000 v,v,,Q,Q m ). It can be seen that the values of the correlation coefficients are 

mostly under ~0,5 for each pairs of model parameters, which means that the estimated param-

eters are in connection i.e. are correlated moderately but the results are still reliable. The mean 

spread is obtained 0,3788, which also confirms the reliability of the inversion results. In order 

to prove the advantages of the joint inversion method we processed the measurement data of 

Berea sandstone (Prasad and Manghnani (1997)) by two single inversion procedures sepa-

rately, of which results can be seen in Table 3. At the end of the inversion procedure the mean 

spreads are calculated. It is obtained 0,3793 for the velocity data set and 0,44 for the quality 
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factor data, respectively. It can be seen that as a result of applying a joint inversion method 

the inversion results can be improved, the mean spread can be reduced and the reliability of 

the inversion result can be increased. 

 

Table 2.: Values of the calculated measure of fitting in data space 

Correlation matrix of model parameters estimated by the joint inver-

sion method 























1.0000     0.1537     0.5571-   0.5120-   0.0880     

0.1537     1.0000     0.0942     0.3002-   0.7753-   

0.5571-   0.0942     1.0000     0.3138-   0.0540     

0.5120-   0.3002-   0.3138-   1.0000     0.1720-   

0.0880     0.7753-   0.0540     0.1720-   1.0000     

)(corr m  

 

4.2.5. Inversion results 

By means of (joint) inversion-based processing introduced in the previous section the model 

parameters were determined from measurement data. The inverse problem was significantly 

overdetermined; hence the inversion procedure was numerically stable and could be handled 

by a linear inversion technique. With the estimated parameters the quality factors and acoustic 

velocities can be determined at any pressure by means of the developed model equations. 

Figs. 1-5 represent the results – in case of quality factor data – and Fig. 6 shows the joint 

inversion results. For making a comparison, Fig. 7 represents the results of the single inversion 

procedures of the Berea sample. In the figures solid lines show the calculated function, while 

asterisks represent the measured data. Figs. 1-7 show that the calculated curves are in good 

accordance with the measured data, which proves that the suggested petrophysical models for 

the explanation of the exponential relationship between the seismic Q/velocity and rock pres-

sure apply well in practice.  
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Figure 1.: Pressure dependence of compressional wave quality factor in Berea sandstone sam-

ple. Data obtained from Toksöz et al. (1979). Solid line represents the calculated data: results 

of inversion processing using the quality factor model; asterisks show the measured data.  

 

Figure 2.: Pressure dependence of compressional wave quality factor in Rotbach sandstone 

sample. Data obtained from Lucet and Zinszner (1992). Solid line represents the calculated 

data: results of inversion processing using the quality factor model; asterisks show the meas-

ured data. 
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Figure 3.: Pressure dependence of compressional wave quality factor in Coal No. 15 sample. 

Data obtained from Yu et al. (1993). Solid line represents the calculated data: results of in-

version processing using the quality factor model; asterisks show the measured data. 

 

It can be seen also in the figures that in the lower pressure regime – which is the most 

important range in near-surface problems such as mining, geotechnics, oil exploration, etc. -, 

the increase in quality factor and longitudinal velocity with increasing pressure is very steep 

and nonlinear; this is due to the closure of microcracks. In the higher pressure regime, the 

increase in quality factor and velocity (with increasing pressure) is moderate as fewer numbers 

of cracks are available for closing. 

For the characterization of the accuracy of estimations, the measure of fitting in data 

space was calculated according to the data misfit formula (Dobróka et al. 1991) 
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, (31) 

where 
)(m

kd  is the measured quality factor and seismic velocity at the k-th pressure value and 

)(c

kd  is the k-th calculated quality factor and seismic velocity data, which can be computed 

according to Eq.(7) or rather Eq.(14). Tables 2-3. contain the obtained percentages. 
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Figure 4.: Pressure dependence of compressional wave quality factor in Coal No. 17 sample. 

Data obtained from Yu et al. (1993). Solid line represents the calculated data: results of in-

version processing using the quality factor model; asterisks show the measured data. 

 

Figure 5.: Pressure dependence of compressional wave quality factor in Hebron gneiss sam-

ple. Data obtained from Meglis et al. (1996). Solid line represents the calculated data: results 

of inversion processing using the quality factor model; asterisks show the measured data. 
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Figure 6.: Pressure dependence of quality factor and seismic velocity of compressional wave 

in Berea sandstone sample. Data adopted from Prasad and Manghnani (1997). Solid line rep-

resents the calculated data: results of inversion processing using the quality factor model; 

asterisks show the measured data. 
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a 

 
b 

Figure 7.: Pressure dependence of quality factor (a) and seismic velocity (b) of compressional 

wave in Berea sandstone sample. Data taken over from Prasad and Manghnani (1997). Solid 

line represents the calculated data: results of inversion processing using the quality factor 

model; asterisks show the measured data. 
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Table 3.: Model parameters with their estimation errors calculated by two single inversion 

procedures using Berea sandstone 

Sample Estimated petrophysical model parameters 
D 

(%)  Q0 ΔQ0 

λ 

(1/MPa) 

Δν0 

(km/s) 

ν0 

(km/s) 

Berea, dry 

(Prasad and Manghnani 

1997) 

16,14 

(±0,86) 

54,81 

(±1,15) 

0,0907 

(±0,0031) 
- - 2,51 

Berea, dry 

(Prasad and Manghnani 

1997) 

- - 
0,1477 

(±0,0115) 

0,88 

(±0,01) 

3,67 

(±0,01) 
2,34 

 

The fitting in case of processed quality factor data sets was under 4.5% except for the 

Rotbach sample. The inversion would have been more accurate – and resulted in smaller value 

- at that sample, if quality factor had been measured beside more pressure values. By the joint 

inversion method the fitting between measured and calculated data was 5.59%. However, by 

using a joint inversion method the mean spread can be reduced, on the other hand the fitting 

can be improved. Based on Figs. 6-7 one can see that the reason of the latter is originated from 

the velocity data set. Even so the noise in data space is small-scale, which confirms the accu-

racy of the inversion result and the feasibility of the developed petrophysical models. 
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